Development of a Micro-Habitat Hyperbaric Welding System
Abstract The maturation of North Sea platform jackets coupled with high fatigue stresses, fabrication defects, extensive usage, and low-redundancy design eventually result in fatigue cracking. The high sea states in the North Sea further exacerbate the problem. If not closely monitored, fatigue cracks can propagate into and around the circumference of a brace relatively quickly—ultimately leading to brace severance. When confronted with a loss of structural integrity, operators have two options: conduct expensive subsea repairs or decommission the asset. Realising a market gap, DCN Diving has explored alternate repair strategies, leading to the development of the DCN-patent pending µ-Habitat welding system. The µ-Habitat makes it possible to respond quicker, execute subsea repairs faster and guarantee quality at a fraction of the cost of bespoke or modular habitats. Through size reduction, it is possible to reduce the fabrication, production, and handling costs of µ-Habitat. Furthermore, the smaller footprint reduces installation time while simplifying sealing and de-watering offshore, saving time and money. Using a combination of product development facilitators and process improvement methodologies, such as AGILE, SCRUM, and design thinking, reduces the preparation time, making the system incredibly responsive yet flexible. Additionally, using an experienced and dedicated project team in combination with standardised products further minimises the response time to execute a repair. A dry environment, pre-heating, in-process cleaning/grinding, and unrestricted access are fundamental to ensuring high-quality welds. In addition, prototyping, extensive function testing, and mock-ups validate the habitat design before commissioning via factory acceptance testing and mobilisation to guarantee the failsafe performance of the µ-Habitat offshore. The µ-Habitat can play a crucial role in the overall life extension strategy for any offshore structure, ultimately minimising cost, risk and production downtime associated with future subsea repairs.