Logging Optimization and Data Analysis Enabling Bypass Pay Identification and Hydrocarbon Quantification with Advanced Pulsed Neutron Behind Casing

2021 ◽  
Author(s):  
Sviatoslav Iuras ◽  
Samira Ahmad ◽  
Chiara Cavalleri ◽  
Yernur Akashev

Abstract Ukraine ranks the third largest gas reserves in Europe. Gas production is carried out mainly from the Dnieper-Donets Basin (DDB). A gradual decline in reserves is forcing Ukraine to actively search for possible sources to increase reserves by finding bypassed gas intervals in existing wells or exploration of new prospects. This paper describes 3 case studies, where advanced pulsed neutron logging technology has shown exceptional value in gas-bearing layer identification in different scenarios. The logging technology was applied for formation evaluation. The technology is based on the neutron interaction with the minerals and the fluids contained in the pore space. The logging tool combines measurements from multiple detectors and spacing for self-compensated neutron cross-capture section (sigma) and hydrogen index (HI), and the Fast Neutron Cross Section (FNXS) high-energy neutron elastic cross section rock property. Comprehensive capture and inelastic elemental spectroscopy are simultaneously recorded and processed to describe the elemental composition and the matrix properties, reducing the uncertainties related to drilling cuttings analysis, and overall, the petrophysical evaluation combined with other log outputs. The proposed methodology was tested in several wells, both in open hole and behind casing. In the study we present its application in three wells from different fields of the DDB. The log data acquisition and analysis were performed across several sandstone beds and carbonates formation with low porosities (<10%), in various combinations of casing and holes sizes. The results showed the robustness and effectiveness of using the advanced pulsed neutron logging (PNL) technologies in multiple cases: Case Study A: Enabling a standalone cased hole evaluation and highlighting new potential reservoir zones otherwise overlooked due to absence of open hole logs. Case Study B: Finding by-passed hydrocarbon intervals that were missed from log analysis based on conventional open hole logs for current field operator. Case Study C: Identifying gas saturated reservoirs and providing solid lithology identification that previously was questioned from drilling cuttings in an unconventional reservoir.

2019 ◽  
Vol 10 (1) ◽  
pp. 134 ◽  
Author(s):  
Mohamd Laimon ◽  
Thanh Mai ◽  
Steven Goh ◽  
Talal Yusaf

The development of a complex and dynamic system such as the energy sector requires a comprehensive understanding of its constituent components and their interactions, and thus requires approaches that can adapt to the dynamic complexity in systems. Previous efforts mainly used reductionist approaches, which examine the components of the system in isolation, neglecting their interdependent nature. Such approaches reduce our ability to understand the system and/or mitigate undesirable outcomes. We adopt a system dynamics approach to construct an integrated model for analysing the behaviour of the energy sector. Although the Australian energy sector is used as a case study, the model can be applied in other context elsewhere around the world The results indicate that the current trajectory of the Australian energy sector is unsustainable and growth is not being controlled. Limits to growth are fast approaching due to excessive fossil fuel extraction, high emissions and high energy dependency. With the current growth, Australia’s global CO2 emissions footprint will increase to unprecedented levels reaching 12% by 2030 (9.5% for exports and 2.5% for domestic). Oil dependency will account for 43% and 47% of total consumption by 2030 and 2050. By 2032, coal will be the only fossil fuel resource available in Australia. Expansion of investment in coal and gas production is a large risk.


2021 ◽  
Author(s):  
Rafael Zambrano ◽  
Yevhen Makar ◽  
Michael Sadivnyk ◽  
Andriy Butenko ◽  
Oleksandr Doroshenko ◽  
...  

Abstract The Sakhalin Field is located in the Dnieper-Donets Basin, east of Ukraine, and has been producing 7.7 billion cubic meters of natural gas in place from carboniferous rocks since the 1980s. Notwithstanding, it is strongly believed that significant untapped resources remain in the field, specifically those classified as tight intervals. Advances in wireline logging technology have brought, besides better accuracy on measurements behind the casing, a new measurement called fast neutron cross-section (FNXS), which has proved to be sensitive enough to the volume of gas in low-porosity formations. This enabled a quantitative interpretation for a better understanding of where these additional resources may lie in the Sakhalin Field. The methodology is based on advanced pulsed neutron spectroscopy logs to assess the essential formation properties such as lithology, porosity, and gas saturation and reduce the evaluation uncertainty in potential tight gas intervals. The advanced technology combines measurements from multiple detectors that represent independent formation properties such as formation sigma, thermal neutron porosity, FNXS, and elemental fractions. To address the lithology, the tool measures directly the rock elements required to determine representative mineralogy and matrix properties, which in turn are used to compensate for the matrix effects and obtain a reliable porosity and gas volume estimation. The methodology was tested on the upper Visean productive zones (Mississippian epoch) characterized by its low porosity (<10 pu) and permeability (<10 mD). In the past, those intervals have been overlooked because of inconclusive petrophysical interpretation based on basic openhole logs and their low production in some areas of the field. The necessity to finding new reserves has motivated the re-evaluation of possible bypassed tight-gas intervals by logging of mature wells behind casing in different sectors of the field. Advanced pulsed neutron spectroscopy logging behind casing uniquely identifies reserves in tight-gas intervals where basic open-hole interpretations were ambiguous. The gas production obtained from the perforated intervals supports the formation evaluation parameters estimated from the standalone interpretation of the pulsed neutron data. This work describes in detail the application of the alternative methodology and interpretation workflow to evaluate the formation through the casing. A concrete example is presented to illustrate the effectiveness of this approach in the revealing and development of tight gas reservoirs in mature fields in the Dnieper-Donets Basin.


2020 ◽  
Vol 239 ◽  
pp. 14002
Author(s):  
Florencia Cantargi ◽  
Javier Dawidowski ◽  
Christian Helman ◽  
José Ignacio Márquez Damian ◽  
Rolando Jose Granada ◽  
...  

Cold neutrons are widely used in different fields of research such as the study of the structure and dynamics of solids and liquids, the investigation of magnetic materials, biological systems, polymer science, and a rapidly growing area of industrial applications. In a pulsed neutron source where the pulse width is an important parameter to be considered, hydrogenated materials are often used because of their high energy transfer in each collision. The preliminary scattering kernel for triphenylmethane, a material of great potential interest for cold neutron production, had been presented at the ND2016 conference. Here, a new model for the generation of the scattering kernels for this material, together with experimental results on its total cross section measured at the VESUVIO instrument (ISIS Neutron and Muon Source, United Kingdom) is presented. The thermal scattering kernel was generated by means of the NJOY Nuclear Data Processing system, using as input the vibrational modes obtained by density functional theory techniques (DFT). The agreement between measurements and our model validates the scattering kernel construction and the cross section library generated in ENDF and ACE formats.


2013 ◽  
Vol 28 (20) ◽  
pp. 1350099 ◽  
Author(s):  
M. J. MENON ◽  
P. V. R. G. SILVA

A forward amplitude analysis on pp and [Formula: see text] elastic scattering above 5 GeV is presented. The dataset includes the recent high-precision TOTEM measurements of the pp total and elastic (integrated) cross-sections at 7 TeV and 8 TeV. Following previous works, the leading high-energy contribution for the total cross-section (σ tot ) is parametrized as ln γ(s/sh), where γ and sh are free real fit parameters. Singly-subtracted derivative dispersion relations are used to connect σ tot and the rho parameter (ρ) in an analytical way. Different fit procedures are considered, including individual fits to σ tot data, global fits to σ tot and ρ data, constrained and unconstrained data reductions. The results favor a rise of the σ tot faster than the log-squared bound by Froissart and Martin at the LHC energy region. The parametrization for σ tot is extended to fit the elastic cross-section (σ el ) data with satisfactory results. The analysis indicates an asymptotic ratio σ el /σ tot consistent with 1/3 (as already obtained in a previous work). A critical discussion on the correlation, practical role and physical implications of the parameters γ and sh is presented. The discussion confronts the 2002 prediction of σ tot by the COMPETE Collaboration and the recent result by the Particle Data Group (2012 edition of the Review of Particle Physics). Some conjectures on possible implications of a fast rise of the proton–proton total cross-section at the highest energies are also presented.


2020 ◽  
Author(s):  
Baraka Said Al Afeefi ◽  
Saudyano Bong ◽  
Hammad Mustafa ◽  
Myrat Kuliyev ◽  
Sunil Chitre ◽  
...  

2021 ◽  
Author(s):  
Rafael Zambrano ◽  
Michael Sadivnyk ◽  
Yevhen Makar ◽  
Chiara Cavalleri ◽  
David Rose

Abstract Formation evaluation using cased-hole logs is a primary option for re-evaluating old wells in brownfields or contingency logging in new wells. Its consistency with a robust open hole evaluation is vital for its future implementation in field development. This work describes detailed open- and cased- hole evaluation workflows integrating different advanced subsurface measurements and alternative interpretation techniques to reduce the uncertainties of deriving the main petrophysical properties across the conventional and tight gas reservoirs in the Dnieper-Donets basin. Since not all open-hole measurements can be recorded behind casing and some of the cased hole logs are not characterized for open hole conditions, it is not always possible to implement the same evaluation techniques for measurements done in open hole and cased hole. Nevertheless, different measurements provide different formation responses that supplement their gaps from one another. A wireline data acquisition strategy has been elaborated to carry out formation evaluation workflows using open- and cased-hole data independently but learning from each other. The methodology is based on novel and non-standard evaluation techniques that use measurements from advanced wireline technology such as nuclear magnetic resonance (NMR) and advanced pulsed neutron spectroscopy logs. The methodology was applied to log data recorded on the Visean and Serpukhovian (Lower Carboniferous) productive gas zones, characterized by porosity (5-15pu) and permeability (0.1-100mD). The principal challenge for the formation evaluation of these reservoirs is deriving an accurate estimation of porosity, which requires removing the gas and matrix effects on the log responses. An inaccurate porosity estimation will result in an inaccurate permeability and water saturation, and the problem worsens in low-porosity rocks. In the open hole, the porosity computation from the Density-Magnetic Resonance (DMR) technique has proven to be more accurate in comparison with common single porosity methods. The same problem is addressed in cased hole conditions with the advanced pulsed neutron spectroscopy logs and a novel technique that combines the thermal neutron elastic scattering and fast neutron cross sections to obtain a gas-free and matrix-corrected porosity, as well as a resistivity independent gas saturation. The consistency of petrophysical properties independently estimated from the two separate workflows add confidence to the approach, and this is reflected in the gas production obtained from the perforated intervals. This script describes in detail the open- and cased- hole formation evaluation workflows and the wireline technology and methodologies applied. Actual examples illustrate the effectiveness of these quantitative approaches in the Dnieper-Donets basin.


2021 ◽  
Author(s):  
Yernur Akashev ◽  
Samira Ahmad ◽  
Chiara Cavalleri ◽  
Yulia Ignatochkina ◽  
Yevgenii Solodkiy

Abstract Field A is located in the center of the Dnieper-Donets basin (DDB), producing gas from clastic reservoirs from several deep horizons in the Upper Visean sediments. The case study highlights the application of advanced pulsed neutron logging technologies and high-resolution data processing to unlock the sedimentary layers’ characteristics and the gas potential behind the casing. Multiple rock measurements are simultaneously recorded for continuous lithology identification, porosity quantification, and differentiating gas-filled porosity from low porosity formations. Dedicated log data acquisition and processing techniques enable investigating the effect of thin laminations on reservoir quality and producibility. The use of advanced pulsed neutron logging and interpretation method reduces the operational risks while securing critical reservoir parameters. A pulsed neutron spectroscopy tool provided a rich dataset including a self-compensated sigma and neutron porosity logs, fast neutron cross section (FNXS) together with capture and inelastic elemental spectroscopy. The logs interpretation was performed integrating FNXS and very high-resolution neutron porosity with mineral dry weight fractions and matrix properties from elemental spectroscopy processing. The comparison between the pulsed neutron measurements with standard open hole logs highlights the critical role of advanced fit-to-purpose logging techniques to accurately describe the underlying complexity of the formation and obtain improved net reservoir and net pay thicknesses in laminated and heterogeneous sequences. The logging objectives were successfully met, and additional valuable information related to the reservoir were determined in an efficient manner. The study also shows the critical value of FNXS as confident gas measurement. The FNXS measures the ability of the formation interacting with fast neutrons which are highly dependent on atomic density and not dominated by particular isotopes such as traditional sigma and porosity measurements. It is highly sensitive to gas-filled porosity, but it is independent of hydrogen index, acting like a cased-hole density measurement. Moreover, it demonstrates the importance of accurate knowledge of the mineralogy and matrix as well as the ability to measure at very high resolution to unravel the highly layered nature of the formation and its implication on completion and production strategy. Pulsed neutron logging has evolved over a half century, but the intrinsic physical measurements remain unchanged. With the advent and introduction of the new FNXS measurement and a high-quality spectroscopy elemental concentration, a higher quality measurement and interpretation can be obtained from standalone pulsed neutron logging. The advanced technology and log data analysis interpretation module can be considered as an effective and comprehensive methodology for robust formation evaluation in similar and complex setting.


2015 ◽  
Vol 3 (1) ◽  
pp. SA135-SA142
Author(s):  
Venkataraman Jambunathan ◽  
FNU Suparman ◽  
Zhipeng Liu ◽  
Weijun Guo ◽  
Daniel Dorffer

Formation evaluation for mature oil fields remains a challenge for operators. Rock-petrophysical properties present large uncertainties following years of production. Formation evaluation becomes even more challenging when there is a lack of open-hole logging data as is typically the case. Logging programs for cased-hole formation evaluation are limited by the size of the well completion. In addition, a metallic casing often prevents the effective use of electric measurements. However, pulsed-neutron tools (PNTs) are a viable option for mature fields. We developed a brief review of PNT theory. The high-energy neutrons output at a high count rate fit the need of cased-hole applications. Application of pulsed-neutron technology for mature fields and a case history from west Texas, in which pulsed neutron technology was used to determine remaining oil saturation are discussed. We documented the best practice for data acquisition and the processing workflow. Having a good collaboration between operator and service provider helps to better understand the logging objectives and in job planning, which is important for the success of the logging operation.


Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


Sign in / Sign up

Export Citation Format

Share Document