Transient Pressure Data Interpretation of Horizontal Wells in a Multilayered Reservoir

1995 ◽  
Author(s):  
M. Furuya ◽  
S. Takahashi
2017 ◽  
Vol 157 ◽  
pp. 1197-1208 ◽  
Author(s):  
Ren Zongxiao ◽  
Wu Xiaodong ◽  
Han Guoqing ◽  
Liu Lingyan ◽  
Wu Xiaojun ◽  
...  

2021 ◽  
Author(s):  
Ruslan Rubikovich Urazov ◽  
Alfred Yadgarovich Davletbaev ◽  
Alexey Igorevich Sinitskiy ◽  
Ilnur Anifovich Zarafutdinov ◽  
Artur Khamitovich Nuriev ◽  
...  

Abstract This research presents a modified approach to the data interpretation of Rate Transient Analysis (RTA) in hydraulically fractured horizontal well. The results of testing of data interpretation technique taking account of the flow allocation in the borehole according to the well logging and to the injection tests outcomes while carrying out hydraulic fracturing are given. In the course of the interpretation of the field data the parameters of each fracture of hydraulic fracturing were selected with control for results of well logging (WL) by defining the fluid influx in the borehole.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia Zhang ◽  
Shiqing Cheng ◽  
Jie Zhan ◽  
Qi Han

Viscoelastic polymer solution shows shear thinning behavior at low shear rates and shear thickening behavior at high shear rates in reservoirs. However, models that ignored shear thickening behavior were commonly employed to interpret transient pressure data derived from tested wells in viscoelastic polymer flooding systems; although, viscoelastic polymer solutions show shear thickening behavior in the near-wellbore region due to high shear rate. To better characterize the oilfield with pressure transient analysis in viscoelastic polymer flooding systems, we developed a numerical model that takes into account both shear thinning behavior and shear thickening behavior. A finite volume method was employed to discretize partially differential flow equations in a hybrid grid system including PEBI mesh and Cartesian grid, and the Newton-Raphson method was used to solve the fully implicit nonlinear system. To illustrate the significance of our model, we compared our model with a model that ignores the shear thickening behavior by graphing their solutions on log-log plots. In the flow regime of near-wellbore damage, the pressure derivative computed by our model is distinctly larger than that computed by the model ignoring shear thickening behavior. Furthermore, the effect of shear thickening behavior on pressure derivative differs from that of near-wellbore damage. We then investigated the influence of shear thickening behavior on pressure derivative with different polymer injection rates, injection rates, and permeabilities. The results can provide a benchmark to better estimate near-wellbore damage in viscoelastic polymer flooding systems. Besides, we demonstrated the applicability and accuracy of our model by interpreting transient pressure data from a field case in an oilfield with viscoelastic polymer flooding treatments.


2021 ◽  
Author(s):  
Yifei Guo ◽  
Pradeepkumar Ashok ◽  
Eric van Oort ◽  
Ross Patterson ◽  
Dandan Zheng ◽  
...  

Abstract Well interference, which is commonly referred to as frac hits, has become a significant factor affecting production in fractured horizontal shale wells with the increase in infill drilling in recent years. Today, there is still no clear understanding on how frac hits affect production. This paper aims to develop a process to automatically identify the different types of frac hits and to determine the effect of stage-to-well distance and frac hit intensity on long-term parent well production. First, child well completions data and parent well pressure data are processed by a frac hit detection algorithm to automatically identify different frac hit intensities and duration within each stage. This algorithm classifies frac hits based on the magnitude of the differential pressure spikes. The frac stage to parent well distance is also calculated. Then, we compare the daily production trend before and after the frac hits to determine the severity of its influence on production. Finally, any evident correlations between the stage-to-well distance, frac hit intensity and production change are identified and investigated. This work utilizes 3 datasets covering 22 horizontal wells in the Bakken Formation and 37 horizontal wells in the Eagle Ford Shale Formation. These sets included well trajectories, child well completions data, parent well pressure data and parent well production data. The frac hit detection algorithm developed can accurately detect frac hits in the available dataset with minimal false alerts. The data analysis results show that frac hit severity (production response) and intensity (pressure response) are not only affected by the distance between parent and child wells, but also affected by the directionality of the wells. Parent wells tend to experience more frac hits from the child frac stages with smaller direction angles and shorter stage-to-parent distances. Formation stress change with time is another factor that affects frac hit intensity. Depleted wells are more susceptible to frac hits even if they are further from the child wells. Also, we observe frac hits in parent wells due to a stimulation of a child well in a different shale formation. This paper presents a novel automated frac hit detection algorithm to quickly identify different types of frac hits. This paper also presents a novel way of carrying out production analysis to determine whether frac hits in a well have positive or negative influence long-term production. Additionally, the paper introduces the concept of the stage-to-well distance as a more accurate metric for analyzing the influence of frac hits on production.


Sign in / Sign up

Export Citation Format

Share Document