A Three-Layer Modeling for Cuttings Transport with Coiled Tubing Horizontal Drilling

Author(s):  
Hyun Cho ◽  
Subhash N. Shah ◽  
Samuel O. Osisanya
2020 ◽  
Vol 17 (6) ◽  
pp. 1602-1615
Author(s):  
Xu-Yue Chen ◽  
Tong Cao ◽  
Kai-An Yu ◽  
De-Li Gao ◽  
Jin Yang ◽  
...  

AbstractEfficient cuttings transport and improving rate of penetration (ROP) are two major challenges in horizontal drilling and extended reach drilling. A type of jet mill bit (JMB) may provide an opportunity to catch the two birds with one stone: not only enhancing cuttings transport efficiency but also improving ROP by depressuring at the bottom hole. In this paper, the JMB is further improved and a new type of depressure-dominated JMB is presented; meanwhile, the depressurization capacity of the depressure-dominated JMB is investigated by numerical simulation and experiment. The numerical study shows that low flow-rate ratio helps to enhance the depressurization capacity of the depressure-dominated JMB; for both depressurization and bottom hole cleaning concern, the flow-rate ratio is suggested to be set at approximately 1:1. With all other parameter values being constant, lower dimensionless nozzle-to-throat-area ratio may result in higher depressurization capacity and better bottom hole cleaning, and the optimal dimensionless nozzle-to-throat-area ratio is at approximately 0.15. Experiments also indicate that reducing the dimensionless flow-rate ratio may help to increase the depressurization capacity of the depressure-dominated JMB. This work provides drilling engineers with a promising tool to improve ROP.


2014 ◽  
Vol 54 (1) ◽  
pp. 329
Author(s):  
Mohammadreza Kamyab ◽  
Nelson Chin ◽  
Vamegh Rasouli ◽  
Soren Soe ◽  
Swapan Mandal

Coiled tubing (CT) technology has long been used in the oil and gas industry for workover and stimulation applications; however, the application of this technology for drilling operations has also been used more recently. Faster tripping, less operational time, continuous and safer operation, and the requirement for fewer crew members are some of the advantages that make CT a good technique for drilling specially deviated wells, in particular, in unconventional reservoirs for the purpose of improved recovery. Cuttings transport in deviated and horizontal wells is one of the challenges in directional drilling as it is influenced by different parameters including fluid velocity, density and rheological properties, as well as hole deviation angle, annulus geometry and particle sizes. To understand the transportation of the cuttings in the annulus space, therefore, it is useful to perform physical simulations. In this study the effect of wellbore angle and fluid rheological properties were investigated physically using a flow loop that has been developed recently for this purpose. The minimum transportation velocity was measured at different angles and an analysis was performed to study the fluid carrying capacity and hole cleaning efficiency. The results indicated how the change in wellbore angle could change the cuttings transport efficiency.


2015 ◽  
Author(s):  
D. J. Schlosser ◽  
M.. Johe ◽  
T.. Humphreys ◽  
C.. Lundberg ◽  
J. L. McNichol

Abstract The Oil and Gas industry has explored and developed the Lower Shaunavon formation through vertical drilling and completion technology. In 2006, previously uneconomic oil reserves in the Lower Shaunavon were unlocked through horizontal drilling and completions technologies. This success is similar to the developments seen in many other formations within the Williston Basin and Western Canadian Sedimentary Basin including Crescent Point Energy's Viewfield Bakken play in southeast Saskatchewan. In the Lower Shaunavon play, the horizontal multistage completion era began in 2006, with horizontal divisions of four to six completion stages per well that utilized ball-drop sleeves and open-hole packers. By 2010, the stage count capabilities of ball-drop systems had increased and liners with nine to 16 stages per well were being run. With an acquisition in 2009, Crescent Point Energy began operating in the Lower Shaunavon area. The acquisition was part of the company's strategy to acquire large oil-in-place resource plays. Recognizing the importance that technology brings to these plays, Crescent Point Energy has continuously developed and implemented new technology. In 2009, realizing the success of coiled tubing fractured cemented liners in the southeast Saskatchewan Viewfield Bakken play, Crescent Point Energy trialed their first cemented liners in the Lower Shaunavon formation. At the same time, technology progressed with advancements in completion strategies that were focused on fracture fluids, fracture stages, tool development, pump rates, hydraulic horsepower, environmental impact, water management, and production. In 2013, another step change in technology saw the implementation of coiled tubing activated fracture sleeves in cemented liner completions. Based on field trials and well results in Q4 2013, Crescent Point Energy committed to a full cemented liner program in the Lower Shaunavon. This paper presents the evolution of Crescent Point Energy's Lower Shaunavon resource play of southwest Saskatchewan. The benefits of current completion techniques are: reductions in water use, increased production, competitive well costs, and retained wellbore functionality for potential re-fracture and waterflooding programs.


Sign in / Sign up

Export Citation Format

Share Document