Coiled Tubing Drilling: Directional and Horizontal Drilling With Larger Hole Sizes

Author(s):  
Paul McCutchion ◽  
Toni Miszewski ◽  
Joe Heaton
2015 ◽  
Author(s):  
D. J. Schlosser ◽  
M.. Johe ◽  
T.. Humphreys ◽  
C.. Lundberg ◽  
J. L. McNichol

Abstract The Oil and Gas industry has explored and developed the Lower Shaunavon formation through vertical drilling and completion technology. In 2006, previously uneconomic oil reserves in the Lower Shaunavon were unlocked through horizontal drilling and completions technologies. This success is similar to the developments seen in many other formations within the Williston Basin and Western Canadian Sedimentary Basin including Crescent Point Energy's Viewfield Bakken play in southeast Saskatchewan. In the Lower Shaunavon play, the horizontal multistage completion era began in 2006, with horizontal divisions of four to six completion stages per well that utilized ball-drop sleeves and open-hole packers. By 2010, the stage count capabilities of ball-drop systems had increased and liners with nine to 16 stages per well were being run. With an acquisition in 2009, Crescent Point Energy began operating in the Lower Shaunavon area. The acquisition was part of the company's strategy to acquire large oil-in-place resource plays. Recognizing the importance that technology brings to these plays, Crescent Point Energy has continuously developed and implemented new technology. In 2009, realizing the success of coiled tubing fractured cemented liners in the southeast Saskatchewan Viewfield Bakken play, Crescent Point Energy trialed their first cemented liners in the Lower Shaunavon formation. At the same time, technology progressed with advancements in completion strategies that were focused on fracture fluids, fracture stages, tool development, pump rates, hydraulic horsepower, environmental impact, water management, and production. In 2013, another step change in technology saw the implementation of coiled tubing activated fracture sleeves in cemented liner completions. Based on field trials and well results in Q4 2013, Crescent Point Energy committed to a full cemented liner program in the Lower Shaunavon. This paper presents the evolution of Crescent Point Energy's Lower Shaunavon resource play of southwest Saskatchewan. The benefits of current completion techniques are: reductions in water use, increased production, competitive well costs, and retained wellbore functionality for potential re-fracture and waterflooding programs.


1999 ◽  
Author(s):  
E. Kevin Stiles ◽  
Mark W. DeRoeun ◽  
I. Jason Terry ◽  
Steven P. Cornell ◽  
Sid J. DuPuy

2000 ◽  
Vol 122 (3) ◽  
pp. 123-128 ◽  
Author(s):  
Alexander Martinez ◽  
Stefan Miska ◽  
Ergun Kuru ◽  
James Sorem

In horizontal and extended reach drilling, a large frictional drag may occur. If the pipe buckles laterally or into a helical shape, additional lateral contact force, LCF, is developed between the pipe and the wellbore wall, increasing the drag force. This paper presents the results of an experimental study of the lateral contact force between the drill pipe and the wellbore wall, for helical pipe configuration. Comparison of the experimental results with the current analytical models is also presented. A horizontal well was simulated using a 2-in-dia hole, 86-ft long, and three different sizes of pipe. Two different techniques were used to measure the lateral contact force. Results from both techniques seem to be in good agreement. The comparison with the current analytical models shows that higher values are predicted. The results will find application in directional drilling, horizontal drilling, and coiled tubing operations. [S0195-0738(00)00603-8]


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Sign in / Sign up

Export Citation Format

Share Document