scholarly journals Identification of Significant Climatic Risk Factors and Machine Learning Models in Dengue Outbreak Prediction

Author(s):  
Felestin Yavari Nejad ◽  
Kasturi Dewi Varathan

Abstract Background: Dengue fever is a widespread viral disease and one of the world’s main pandemic vector-borne infections and serious hazard to humanity. According to the World Health Organization (WHO), the incidence of dengue has grown dramatically worldwide in recent decades. The WHO currently estimates an annual incidence of 50–100 million dengue infections worldwide. Until today there is no tested vaccine or treatment to stop or prevent dengue fever thus the importance of dengue outbreak prediction is significant. The current issue in dengue outbreak prediction is accuracy. There are a limited number of studies that look at in depth analysis of climate factors in dengue outbreak prediction. Methods: In this study, the most significant and important climatic factors that contribute to dengue outbreak were identified. These factors were used as input parameters on machine learning models. The models were trained and evaluated based on four-year data from January 2010 to December 2013 in Malaysia. Results: This work provides two main contributions. A new risk factor, which was called TempeRain Factor (TRF), was determined and used as an input parameter for dengue prediction outbreak model. Moreover, the TRF was applied to demonstrate that its strong impact on dengue outbreaks. Experimental results showed that Support Vector Machine (SVM) with the newly identified meteorological risk factor in this study resulted in higher accuracy of 98.09% and reduced the root mean square error to 0.098 for predicting dengue outbreak. Conclusions: This research managed to explore on the factors that are being used in dengue outbreak prediction systems. The main contribution of this paper is in identifying new significant factors that contribute in dengue outbreak prediction. From the evaluation, we managed to obtain a significant improvement in accuracy of the machine-learning model in dengue outbreak prediction.

2019 ◽  
Author(s):  
Felestin Yavari Nejad ◽  
Kasturi Dewi Varathan

Abstract Background: Dengue fever is a widespread viral disease and one of the world’s major pandemic vector-borne infections, causing serious hazard to humanity. The World Health Organisation (WHO) reported that the incidence of dengue fever has increased dramatically across the world in recent decades. WHO currently estimates an annual incidence of 50–100 million dengue infections worldwide. To date, no tested vaccine or treatment is available to stop or prevent dengue fever. Thus, the importance of predicting dengue outbreaks is significant. The current issue that should be addressed in dengue outbreak prediction is accuracy. A limited number of studies have conducted an in-depth analysis of climate factors in dengue outbreak prediction. Methods: The most important climatic factors that contribute to dengue outbreaks were identified in the current work. These factors were used as input parameters for machine learning models. The models were then tested and evaluated on the basis of four-years data (January 2010 to December 2013) collected in Malaysia. Results: This research has two major contributions. A new risk factor, called the TempeRain Factor (TRF), was identified and used as an input parameter for the model of dengue outbreak prediction. Moreover, TRF was applied to demonstrate its strong impact on dengue outbreaks. Experimental results showed that the Bayes Network model with the new meteorological risk factor identified in this study increased accuracy to 92.35% and reduced the root-mean-square error to 0.26 for predicting dengue outbreaks.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Felestin Yavari Nejad ◽  
Kasturi Dewi Varathan

Abstract Background Dengue fever is a widespread viral disease and one of the world’s major pandemic vector-borne infections, causing serious hazard to humanity. The World Health Organisation (WHO) reported that the incidence of dengue fever has increased dramatically across the world in recent decades. WHO currently estimates an annual incidence of 50–100 million dengue infections worldwide. To date, no tested vaccine or treatment is available to stop or prevent dengue fever. Thus, the importance of predicting dengue outbreaks is significant. The current issue that should be addressed in dengue outbreak prediction is accuracy. A limited number of studies have conducted an in-depth analysis of climate factors in dengue outbreak prediction. Methods The most important climatic factors that contribute to dengue outbreaks were identified in the current work. Correlation analyses were performed in order to determine these factors and these factors were used as input parameters for machine learning models. Top five machine learning classification models (Bayes network (BN) models, support vector machine (SVM), RBF tree, decision table and naive Bayes) were chosen based on past research. The models were then tested and evaluated on the basis of 4-year data (January 2010 to December 2013) collected in Malaysia. Results This research has two major contributions. A new risk factor, called the TempeRain factor (TRF), was identified and used as an input parameter for the model of dengue outbreak prediction. Moreover, TRF was applied to demonstrate its strong impact on dengue outbreaks. Experimental results showed that the Bayes Network model with the new meteorological risk factor identified in this study increased accuracy to 92.35% for predicting dengue outbreaks. Conclusions This research explored the factors used in dengue outbreak prediction systems. The major contribution of this study is identifying new significant factors that contribute to dengue outbreak prediction. From the evaluation result, we obtained a significant improvement in the accuracy of a machine learning model for dengue outbreak prediction.


2020 ◽  
Author(s):  
Felestin Yavari Nejad ◽  
Kasturi Dewi Varathan

Abstract Background: Dengue fever is a widespread viral disease and one of the world’s major pandemic vector-borne infections, causing serious hazard to humanity. The World Health Organisation (WHO) reported that the incidence of dengue fever has increased dramatically across the world in recent decades. WHO currently estimates an annual incidence of 50–100 million dengue infections worldwide. To date, no tested vaccine or treatment is available to stop or prevent dengue fever. Thus, the importance of predicting dengue outbreaks is significant. The current issue that should be addressed in dengue outbreak prediction is accuracy. A limited number of studies have conducted an in-depth analysis of climate factors in dengue outbreak prediction. Methods: The most important climatic factors that contribute to dengue outbreaks were identified in the current work. Correlation analyses were performed in order to determine these factors and these factors were used as input parameters for machine learning models. Top five machine learning classification models (Bayes network (BN) models, support vector machine (SVM), RBF tree, decision table and naive Bayes) were chosen based on past research. The models were then tested and evaluated on the basis of four-years data (January 2010 to December 2013) collected in Malaysia. Results: This research has two major contributions. A new risk factor, called the TempeRain Factor (TRF), was identified and used as an input parameter for the model of dengue outbreak prediction. Moreover, TRF was applied to demonstrate its strong impact on dengue outbreaks. Experimental results showed that the Bayes Network model with the new meteorological risk factor identified in this study increased accuracy to 92.35% and reduced the root-mean-square error to 0.26 for predicting dengue outbreaks. Conclusions: This research explored the factors used in dengue outbreak prediction systems. The major contribution of this study is identifying new significant factors that contribute to dengue outbreak prediction. From the evaluation result, we obtained a significant improvement in the accuracy of a machine learning model for dengue outbreak prediction.


2020 ◽  
Author(s):  
Felestin Yavari Nejad ◽  
Kasturi Dewi Varathan

Abstract Background: Dengue fever is a widespread viral disease and one of the world’s major pandemic vector-borne infections, causing serious hazard to humanity. The World Health Organisation (WHO) reported that the incidence of dengue fever has increased dramatically across the world in recent decades. WHO currently estimates an annual incidence of 50–100 million dengue infections worldwide. To date, no tested vaccine or treatment is available to stop or prevent dengue fever. Thus, the importance of predicting dengue outbreaks is significant. The current issue that should be addressed in dengue outbreak prediction is accuracy. A limited number of studies have conducted an in-depth analysis of climate factors in dengue outbreak prediction. Methods: The most important climatic factors that contribute to dengue outbreaks were identified in the current work. Correlation analyses were performed in order to determine these factors and these factors were used as input parameters for machine learning models. Top five machine learning classification models (Bayes network (BN) models, support vector machine (SVM), RBF tree, decision table and naive Bayes) were chosen based on past research. The models were then tested and evaluated on the basis of four-years data (January 2010 to December 2013) collected in Malaysia. Results: This research has two major contributions. A new risk factor, called the TempeRain Factor (TRF), was identified and used as an input parameter for the model of dengue outbreak prediction. Moreover, TRF was applied to demonstrate its strong impact on dengue outbreaks. Experimental results showed that the Bayes Network model with the new meteorological risk factor identified in this study increased accuracy to 92.35% and reduced the root-mean-square error to 0.26 for predicting dengue outbreaks. Conclusions: This research explored the factors used in dengue outbreak prediction systems. The major contribution of this study is identifying new significant factors that contribute to dengue outbreak prediction. From the evaluation result, we obtained a significant improvement in the accuracy of a machine learning model for dengue outbreak prediction.


2020 ◽  
Author(s):  
Felestin Yavari Nejad ◽  
Kasturi Dewi Varathan

Abstract Background: Dengue fever is a widespread viral disease and one of the world’s major pandemic vector-borne infections, causing serious hazard to humanity. The World Health Organisation (WHO) reported that the incidence of dengue fever has increased dramatically across the world in recent decades. WHO currently estimates an annual incidence of 50–100 million dengue infections worldwide. To date, no tested vaccine or treatment is available to stop or prevent dengue fever. Thus, the importance of predicting dengue outbreaks is significant. The current issue that should be addressed in dengue outbreak prediction is accuracy. A limited number of studies have conducted an in-depth analysis of climate factors in dengue outbreak prediction. Methods: The most important climatic factors that contribute to dengue outbreaks were identified in the current work. Correlation analyses were performed in order to determine these factors and these factors were used as input parameters for machine learning models. Top five machine learning classification models (Bayes network (BN) models, support vector machine (SVM), RBF tree, decision table and naive Bayes) were chosen based on past research. The models were then tested and evaluated on the basis of four-years data (January 2010 to December 2013) collected in Malaysia. Results: This research has two major contributions. A new risk factor, called the TempeRain Factor (TRF), was identified and used as an input parameter for the model of dengue outbreak prediction. Moreover, TRF was applied to demonstrate its strong impact on dengue outbreaks. Experimental results showed that the Bayes Network model with the new meteorological risk factor identified in this study increased accuracy to 92.35% and reduced the root-mean-square error to 0.26 for predicting dengue outbreaks. Conclusions: This research explored the factors used in dengue outbreak prediction systems. The major contribution of this study is identifying new significant factors that contribute to dengue outbreak prediction. From the evaluation result, we obtained a significant improvement in the accuracy of a machine learning model for dengue outbreak prediction.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 36 ◽  
Author(s):  
Tuo He ◽  
João Marco ◽  
Richard Soares ◽  
Yafang Yin ◽  
Alex Wiedenhoeft

Illegal logging and associated trade aggravate the over-exploitation of Swietenia species, of which S. macrophylla King, S. mahagoni (L.) Jacq, and S. humilis Zucc. have been listed in Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendix Ⅱ. Implementation of CITES necessitates the development of efficient forensic tools to identify wood species accurately, and ideally ones readily deployable in wood anatomy laboratories across the world. Herein, a method using quantitative wood anatomy data in combination with machine learning models to discriminate between three Swietenia species is presented, in addition to a second model focusing only on the two historically more important species S. mahagoni and S. macrophylla. The intra- and inter-specific variations in nine quantitative wood anatomical characters were measured and calculated based on 278 wood specimens, and four machine learning classifiers—Decision Tree C5.0, Naïve Bayes (NB), Support Vector Machine (SVM), and Artificial Neural Network (ANN)—were used to discriminate between the species. Among these species, S. macrophylla exhibited the largest intraspecific variation, and all three species showed at least partly overlapping values for all nine characters. SVM performed the best of all the classifiers, with an overall accuracy of 91.4% and a per-species correct identification rate of 66.7%, 95.0%, and 80.0% for S. humilis, S. macrophylla, and S. mahagoni, respectively. The two-species model discriminated between S. macrophylla and S. mahagoni with accuracies of over 90.0% using SVM. These accuracies are lower than perfect forensic certainty but nonetheless demonstrate that quantitative wood anatomy data in combination with machine learning models can be applied as an efficient tool to discriminate anatomically between similar species in the wood anatomy laboratory. It is probable that a range of previously anatomically inseparable species may become identifiable by incorporating in-depth analysis of quantitative characters and appropriate statistical classifiers.


2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prasanna Date ◽  
Davis Arthur ◽  
Lauren Pusey-Nazzaro

AbstractTraining machine learning models on classical computers is usually a time and compute intensive process. With Moore’s law nearing its inevitable end and an ever-increasing demand for large-scale data analysis using machine learning, we must leverage non-conventional computing paradigms like quantum computing to train machine learning models efficiently. Adiabatic quantum computers can approximately solve NP-hard problems, such as the quadratic unconstrained binary optimization (QUBO), faster than classical computers. Since many machine learning problems are also NP-hard, we believe adiabatic quantum computers might be instrumental in training machine learning models efficiently in the post Moore’s law era. In order to solve problems on adiabatic quantum computers, they must be formulated as QUBO problems, which is very challenging. In this paper, we formulate the training problems of three machine learning models—linear regression, support vector machine (SVM) and balanced k-means clustering—as QUBO problems, making them conducive to be trained on adiabatic quantum computers. We also analyze the computational complexities of our formulations and compare them to corresponding state-of-the-art classical approaches. We show that the time and space complexities of our formulations are better (in case of SVM and balanced k-means clustering) or equivalent (in case of linear regression) to their classical counterparts.


Sign in / Sign up

Export Citation Format

Share Document