scholarly journals Application of the adenosine triphosphate sensitivity assay in infantile vascular anomalies

2019 ◽  
Author(s):  
Li Li ◽  
Bin Yang ◽  
Li Wei ◽  
Bin Zhang ◽  
Xiao-feng Han ◽  
...  

Abstract BACKGROUND: The term vascular anomalies include various vascular tumors and vascular malformations, among them infantile hemangiomas and capillary malformations are the most well-known associated diseases in early ages. Multiple drugs have been introduced for intervention, but susceptibility test in vitro were scarcely reported.OBJECTIVE: To evaluate the inhibition effect of adenosine triphosphate sensitivity assay in vitro before the treatment of infantile hemangiomas and capillary malformations. METHODS: Specimens were selected from 5 cases of infantile hemangiomas and 11 cases of capillary malformations. Propranolol, rapamycin, sildenafil and itraconazole were tested for their growth inhibition effect by using the adenosine triphosphate sensitivity assay. RESULTS: Propranolol demonstrated inhibitory effects on infantile hemangiomas cells. Rapamycin and itraconazole both showed inhibitory effects on infantile hemangiomas cells and capillary malformations cells. Sildenafil has no growth inhibitory effect on infantile hemangiomas cells or capillary malformations cells. CONCLUSION: Adenosine triphosphate sensitivity assay is a sensitive and useful testing method before the management of vascular anomalies, and individualized medication suggestions for the choice of therapeutic drugs were offered based on the testing result and together with a comprehensive evaluation of each infant.

1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


2004 ◽  
Vol 101 (2) ◽  
pp. 390-398 ◽  
Author(s):  
Takashi Kawano ◽  
Shuzo Oshita ◽  
Akira Takahashi ◽  
Yasuo Tsutsumi ◽  
Yoshinobu Tomiyama ◽  
...  

Background Sarcolemmal adenosine triphosphate-sensitive potassium (KATP) channels in the cardiovascular system may be involved in bupivacaine-induced cardiovascular toxicity. The authors investigated the effects of local anesthetics on the activity of reconstituted KATP channels encoded by inwardly rectifying potassium channel (Kir6.0) and sulfonylurea receptor (SUR) subunits. Methods The authors used an inside-out patch clamp configuration to investigate the effects of bupivacaine, levobupivacaine, and ropivacaine on the activity of reconstituted KATP channels expressed in COS-7 cells and containing wild-type, mutant, or chimeric SURs. Results Bupivacaine inhibited the activities of cardiac KATP channels (IC50 = 52 microm) stereoselectively (levobupivacaine, IC50 = 168 microm; ropivacaine, IC50 = 249 microm). Local anesthetics also inhibited the activities of channels formed by the truncated isoform of Kir6.2 (Kir6.2 delta C36) stereoselectively. Mutations in the cytosolic end of the second transmembrane domain of Kir6.2 markedly decreased both the local anesthetics' affinity and stereoselectivity. The local anesthetics blocked cardiac KATP channels with approximately eightfold higher potency than vascular KATP channels; the potency depended on the SUR subtype. The 42 amino acid residues at the C-terminal tail of SUR2A, but not SUR1 or SUR2B, enhanced the inhibitory effect of bupivacaine on the Kir6.0 subunit. Conclusions Inhibitory effects of local anesthetics on KATP channels in the cardiovascular system are (1) stereoselective: bupivacaine was more potent than levobupivacaine and ropivacaine; and (2) tissue specific: local anesthetics blocked cardiac KATP channels more potently than vascular KATP channels, via the intracellular pore mouth of the Kir6.0 subunit and the 42 amino acids at the C-terminal tail of the SUR2A subunit, respectively.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vicky Mody ◽  
Joanna Ho ◽  
Savannah Wills ◽  
Ahmed Mawri ◽  
Latasha Lawson ◽  
...  

AbstractEmerging outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is a major threat to public health. The morbidity is increasing due to lack of SARS-CoV-2 specific drugs. Herein, we have identified potential drugs that target the 3-chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of SARS-CoV-2. Computational molecular modeling was used to screen 3987 FDA approved drugs, and 47 drugs were selected to study their inhibitory effects on SARS-CoV-2 specific 3CLpro enzyme in vitro. Our results indicate that boceprevir, ombitasvir, paritaprevir, tipranavir, ivermectin, and micafungin exhibited inhibitory effect towards 3CLpro enzymatic activity. The 100 ns molecular dynamics simulation studies showed that ivermectin may require homodimeric form of 3CLpro enzyme for its inhibitory activity. In summary, these molecules could be useful to develop highly specific therapeutically viable drugs to inhibit the SARS-CoV-2 replication either alone or in combination with drugs specific for other SARS-CoV-2 viral targets.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1301
Author(s):  
Yun Xiong ◽  
Ken Ng ◽  
Pangzhen Zhang ◽  
Robyn Dorothy Warner ◽  
Shuibao Shen ◽  
...  

Diabetes is a global health challenge. Currently, an effective treatment for diabetes is to reduce the postprandial hyperglycaemia by inhibiting the carbohydrate hydrolysing enzymes in the digestive system. In this study, we investigated the in vitro α-glucosidase and α-amylase inhibitory effects of free and bound phenolic extracts, from the bran and kernel fractions of five sorghum grain genotypes. The results showed that the inhibitory effect of sorghum phenolic extracts depended on the phenolic concentration and composition. Sorghum with higher phenolic contents generally had higher inhibitory activity. Among the tested extracts, the brown sorghum (IS131C)-bran-free extract (BR-bran-free, half-maximal inhibitory concentration (IC50) = 18 ± 11 mg sorghum/mL) showed the strongest inhibition against α-glucosidase which was comparable to that of acarbose (IC50 = 1.39 ± 0.23 mg acarbose/mL). The red sorghum (Mr-Buster)-kernel-bound extract (RM-kernel-bound, IC50 = 160 ± 12 mg sorghum/mL) was the most potent in inhibiting α-amylase but was much weaker compared to acarbose (IC50 = 0.50 ± 0.03 mg acarbose/mL).


1966 ◽  
Vol 44 (4) ◽  
pp. 661-676 ◽  
Author(s):  
Robert P. Thompson

To demonstrate the phenomenon of homologous inhibition by clearly interpretable results in a readily reactive system, experiments were carried out to study the effect of chick whole eye extract on the development of the vesicular lens of the chick embryo in vitro. The heads of embryos of 11 through 13 somites were explanted onto nutrient medium diluted with varying amounts of the extract, and cultured for 30 hours. A total of 35 embryos exposed to concentrations of 1:1, 1:2, and 1:4 (extract to medium) showed complete inhibition of lens vesicle formation. Of a total of 53 embryos on concentrations of 1:8, 1:16, 1:32, and 1:64, more than 50% showed inhibition of vesicle formation. The inhibitory effect disappeared at a concentration of 1:128. Control material exposed to some equivalent concentrations of nutrient medium – saline mixtures showed inhibition of vesicle formation in only 15% of 33 embryos. Of a total of 27 control embryos exposed to ventricular muscle extract, approximately one-third showed inhibition of vesicle formation at concentrations of 1:8 and 1:16, with the inhibitory effect disappearing at 1:32. The implications of this result are discussed. Other factors and control experiments are described and their value is assessed.


2003 ◽  
Vol 98 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Ju-Tae Sohn ◽  
Paul A. Murray

Background The authors recently demonstrated that etomidate and ketamine attenuated endothelium-dependent pulmonary vasorelaxation mediated by nitric oxide and Ca -activated K + channels. In the current study, they tested the hypothesis that these intravenous anesthetics inhibit pulmonary vasorelaxation mediated by adenosine triphosphate-sensitive potassium (K + ATP ) channel activation. Methods Endothelium intact and denuded pulmonary arterial rings were suspended in organ chambers for isometric tension recording. The effects of etomidate (5 x 10(-6) and 5 x 10(-5) m) and ketamine (5 x 10(-5) and 10(-4) m) on vasorelaxation responses to lemakalim (K + ATP channel activator), prostacyclin, and papaverine were assessed in phenylephrine-precontracted rings. The effect of cyclooxygenase inhibition with indomethacin was assessed in some protocols. Results Etomidate (5 x 10(-6) m) only inhibited the vasorelaxant response to lemakalim in endothelium intact rings, whereas a higher concentration of etomidate (5 x 10(-5) m) inhibited relaxation in both intact and endothelium-denuded rings. Pretreatment with indomethacin abolished the endothelium-dependent attenuation of lemakalim-induced relaxation caused by etomidate. Ketamine (5 x 10(-5) and 10(-5) m) inhibited the relaxation response to lemakalim to the same extent in both endothelium-intact and -denuded rings, and this effect was not prevented by indomethacin pretreatment. Etomidate and ketamine had no effect on the relaxation responses to prostacyclin or papaverine. Conclusions These results indicate that etomidate, but not ketamine, attenuates the endothelium-dependent component of lemakalim-induced pulmonary vasorelaxation an inhibitory effect on the cyclooxygenase pathway. Both anesthetics inhibit K + ATP -mediated pulmonary vasorelaxation a direct effect on pulmonary vascular smooth muscle.


2015 ◽  
Vol 6 (3) ◽  
pp. 109-111 ◽  
Author(s):  
Jatin P Shah ◽  
Ivana Petrovic ◽  
Ben Roman

ABSTRACT Background Vascular anomalies are divided into vascular tumors, hemangiomas being the most common, and vascular malformations. Most vascular anomalies are noticed at birth or occur during infancy, and generally involve skin or subcutaneous soft tissues. Adult onset hemangiomas are rare, and intramuscular location is extremely rare. Surgical excision is recommended for hemangiomas in adults, if they are symptomatic, or manifest growth. Materials and methods We report a rare case of a 51-year-old woman, with an intramuscular hemangioma of the tongue, presenting as a submental mass. Preoperative imaging for assessment of tumor extent was followed by a successful surgical excision. Results Postoperative course was uneventful with primary healing of the wound, and with no functional deficit of tongue function. Conclusion Although a variety of treatment approaches are reported for childhood hemangiomas, surgical excision is the preferred treatment for adult onset symptomatic hemangiomas. Preoperative work up should include imaging preferably with contrast enhanced magnetic resonance imaging (MRI). Embolization may be considered for larger lesions. Intraoperative hypotension should be avoided to ensure identification of the entire lesion to ensure complete excision. How to cite this article Petrovic I, Roman B, Shah JP. Cavernous Hemangioma of the Tongue. Int J Head Neck Surg 2015;6(3):109-111.


2000 ◽  
Vol 47 (1) ◽  
pp. 113-120 ◽  
Author(s):  
K Bielawski ◽  
A Galicka ◽  
A Bielawska ◽  
K Sredzińska

Pentamidine despite its rather high toxicity, is currently in clinical use. For development of new drugs of this type it is important to know the mechanism of their action. Two new amidines (I and II) and 4',6-diamidino-2-phenylindole (DAPI) were found in preliminary experiments to inhibit protein synthesis in vitro in the cell-free rat liver system. The three compounds differed in the precise mode of action. The inhibitory effect of I on the activity of the eukaryotic elongation factor eEF-2 and ribosomes seems to suggest that the binding site of eEF-2 on the ribosome was blocked by this compound. eEF-2 has been identified as the primary target of II and eEF-1 as the primary target of DAPI in the system studied.


2021 ◽  
pp. 122-137
Author(s):  
Chingju Lin ◽  
Fuu-Jen Tsai ◽  
Yuan-Man Hsu ◽  
Tsung-Jung Ho ◽  
Guo-Kai Wang ◽  
...  

Negative impacts of COVID-19 on human health and economic and social activities urge scientists to develop effective treatments. Baicalin is a natural flavonoid, extracted from a traditional medicinal plant, previously reported with anti-inflammatory activity. In this study, we used pharmacophore fitting and molecular docking to screen and determine docking patterns and the binding affinity of baicalin on 3 major targets of SARS-CoV-2 (3-chymotrypsin-like cysteine protease [3CLpro], papain-like protease [PLpro], and RNA-dependent RNA polymerase). The obtained data revealed that baicalin has high pharmacophore fitting on 3CLpro and predicted good binding affinity on PLpro. Moreover, using the enzymatic assay, we examined the inhibitory effect of baicalin in vitro on the screened enzymes. Baicalin also exhibits inhibitory effect on these proteases in vitro. Additionally, we performed pharmacophore-based screening of baicalin on human targets and conducted pathway analysis to explore the potential cytoprotective effects of baicalin in the host cell that may be beneficial for COVID-19 treatment. The result suggested that baicalin has multiple targets in human cell that may induce multiple pharmacological effects. The result of pathway analysis implied that these targets may be associated with baicalin-induced bioactivities that are involved with signals of pro-inflammation factors, such as cytokine and chemokine. Taken together with supportive data from the literature, the bioactivities of bailalin may be beneficial for COVID-19 treatment by reducing cytokine-induced acute inflammation. In conclusion, baicalin is potentially a good candidate for developing new therapeutic to treat COVID-19.


Sign in / Sign up

Export Citation Format

Share Document