scholarly journals Transcriptome Analysis Reveals the Long Intergenic Noncoding RNAs Contributed to Skeletal Muscle Differences between Yorkshire and Tibetan Pig

2020 ◽  
Author(s):  
Ziying Huang ◽  
Qianqian Li ◽  
Mengxun Li ◽  
Changchun Li

Abstract Background The difference between the skeletal muscle growth rates of Western and domestic breeds is remarkable, but the potential regulatory mechanism involved is still unclear. Numerous studies have pointed out that long intergenic noncoding RNA (lincRNA) plays a key role in skeletal muscle development. This study used published Yorkshire (LW) and Tibetan pig (TP) transcriptome data to explore the possible role of lincRNA in the difference in skeletal muscle development between the two breeds. Results Through differential expression analysis, 138 differentially expressed lincRNAs (DELs) were obtained between the two breeds, and their potential target genes (PTGs) were predicted. The results of Gene Ontology and pathway analysis revealed that PTGs are involved in multiple biological processes and pathways related to muscle development. The quantitative trait loci (QTLs) of DELs were predicted, and the results showed that most QTLs are related to muscle development. Finally, we constructed a co-expression network between muscle development related PTGs (MDRPTGs) and their corresponding DELs on the basis of their expression levels. The expression of DELs was significantly correlated with the corresponding MDRPTGs. Also, multiple MDRPTGs are involved in the key regulatory pathway of muscle fiber hypertrophy, which is the IGF-1-AKT-mTOR pathway. Conclusions In summary, multiple lincRNAs that may cause differences in skeletal muscle development between the two breeds were identified, and their possible regulatory roles were explored. The findings of this study may provide a valuable reference for further research on the role of lincRNA in skeletal muscle development.

2020 ◽  
Author(s):  
Ziying Huang ◽  
Qianqian Li ◽  
Mengxun Li ◽  
Changchun Li

Abstract Background: The difference between the skeletal muscle growth rates of Western and domestic breeds is remarkable, but the potential regulatory mechanism involved is still unclear. Numerous studies have pointed out that long intergenic noncoding RNA (lincRNA) plays a key role in skeletal muscle development. This study used published Yorkshire (LW) and Tibetan pig (TP) transcriptome data to explore the possible role of lincRNA in the difference in skeletal muscle development between the two breeds. Results: Through differential expression analysis, 138 differentially expressed lincRNAs (DELs) were obtained between the two breeds, and their potential target genes (PTGs) were predicted. The results of Gene Ontology and pathway analysis revealed that PTGs are involved in multiple biological processes and pathways related to muscle development. The quantitative trait loci (QTLs) of DELs were predicted, and the results showed that most QTLs are related to muscle development. Finally, we constructed a co-expression network between muscle development related PTGs (MDRPTGs) and their corresponding DELs on the basis of their expression levels. The expression of DELs was significantly correlated with the corresponding MDRPTGs. Also, multiple MDRPTGs are involved in the key regulatory pathway of muscle fiber hypertrophy, which is the IGF-1-AKT-mTOR pathway. Conclusions: In summary, multiple lincRNAs that may cause differences in skeletal muscle development between the two breeds were identified, and their possible regulatory roles were explored. The findings of this study may provide a valuable reference for further research on the role of lincRNA in skeletal muscle development.


2020 ◽  
Author(s):  
Ziying Huang ◽  
Qianqian Li ◽  
Mengxun Li ◽  
Changchun Li

Abstract Background The difference between the skeletal muscle growth rates of Western and domestic breeds is remarkable, but the potential regulatory mechanism involved is still unclear. Numerous studies have pointed out that long intergenic noncoding RNA (lincRNA) plays a key role in skeletal muscle development. This study used published Yorkshire (LW) and Tibetan pig (TP) transcriptome data to explore the possible role of lincRNA in the difference in skeletal muscle development between the two breeds. Results Through differential expression analysis, 138 differentially expressed lincRNAs (DELs) were obtained between the two breeds, and their potential target genes (PTGs) were predicted. The results of Gene Ontology and pathway analysis revealed that PTGs are involved in multiple biological processes and pathways related to muscle development. The quantitative trait loci (QTLs) of DELs were predicted, and the results showed that most QTLs are related to muscle development. Finally, we constructed a co-expression network between muscle development related PTGs (MDRPTGs) and their corresponding DELs on the basis of their expression levels. The expression of DELs was significantly correlated with the corresponding MDRPTGs. Also, multiple MDRPTGs are involved in the key regulatory pathway of muscle fiber hypertrophy, which is the IGF-1-AKT-mTOR pathway. Conclusions In summary, multiple lincRNAs that may cause differences in skeletal muscle development between the two breeds were identified, and their possible regulatory roles were explored. The findings of this study may provide a valuable reference for further research on the role of lincRNA in skeletal muscle development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziying Huang ◽  
Qianqian Li ◽  
Mengxun Li ◽  
Changchun Li

AbstractThe difference between the skeletal muscle growth rates of Western and domestic breeds is remarkable, but the potential regulatory mechanism involved is still unclear. Numerous studies have pointed out that long intergenic noncoding RNA (lincRNA) plays a key role in skeletal muscle development. This study used published Yorkshire (LW) and Tibetan pig (TP) transcriptome data to explore the possible role of lincRNA in the difference in skeletal muscle development between the two breeds. 138 differentially expressed lincRNAs (DELs) were obtained between the two breeds, and their potential target genes (PTGs) were predicted. The results of GO and KEGG analysis revealed that PTGs are involved in multiple biological processes and pathways related to muscle development. The quantitative trait loci (QTLs) of DELs were predicted, and the results showed that most QTLs are related to muscle development. Finally, we constructed a co-expression network between muscle development related PTGs (MDRPTGs) and their corresponding DELs on the basis of their expression levels. The expression of DELs was significantly correlated with the corresponding MDRPTGs. Also, multiple MDRPTGs are involved in the key regulatory pathway of muscle fiber hypertrophy, which is the IGF-1-AKT-mTOR pathway. In summary, multiple lincRNAs that may cause differences in skeletal muscle development between the two breeds were identified, and their possible regulatory roles were explored. The findings of this study may provide a valuable reference for further research on the role of lincRNA in skeletal muscle development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjuan Zhao ◽  
Zijing Li ◽  
Quan Liu ◽  
Su Xie ◽  
Mengxun Li ◽  
...  

AbstractSkeletal muscle growth plays a critical role during porcine muscle development stages. Genome-wide transcriptome analysis reveals that long intergenic non-coding RNAs (lincRNAs) are implicated as crucial regulator involving in epigenetic regulation. However, comprehensive analysis of lincRNAs in embryonic muscle development stages remain still elusive. Here, we investigated the transcriptome profiles of Duroc embryonic muscle tissues from days 33, 65, and 90 of gestation using RNA-seq, and 228 putative lincRNAs were identified. Moreover, these lincRNAs exhibit the characteristics of shorter transcripts length, longer exons, less exon numbers and lower expression level compared with protein-coding transcripts. Expression profile analysis showed that a total of 120 lincRNAs and 2638 mRNAs were differentially expressed. In addition, we also performed quantitative trait locus (QTL) mapping analysis for differentially expressed lincRNAs (DE lincRNAs), 113 of 120 DE lincRNAs were localized on 2200 QTLs, we observed many QTLs involved in growth and meat quality traits. Furthermore, we predicted potential target genes of DE lincRNAs in cis or trans regulation. Gene ontology and pathway analysis reveals that potential targets of DE lincRNAs mostly were enriched in the processes and pathways related to tissue development, MAPK signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and insulin signaling pathway, which involved in skeletal muscle physiological functions. Based on cluster analysis, co-expression network analysis of DE lincRNAs and their potential target genes indicated that DE lincRNAs highly regulated protein-coding genes associated with skeletal muscle development. In this study, many of the DE lincRNAs may play essential roles in pig muscle growth and muscle mass. Our study provides crucial information for further exploring the molecular mechanisms of lincRNAs during skeletal muscle development.


2021 ◽  
Author(s):  
Wenjuan Zhao ◽  
Zijing Li ◽  
Quan Liu ◽  
Su Xie ◽  
Mengxun Li ◽  
...  

Abstract Skeletal muscle growth plays a critical role during porcine muscle development stages. Genome-wide transcriptome analysis reveals that thousands of long intergenic non-coding RNAs (lincRNAs) have been identified in various species and implicated as crucial regulator involving in epigenetic regulation. However, comprehensive analysis of lincRNAs in embryonic muscle development stages remain still elusive. Here, we investigated the transcriptome profiles of duroc embryonic muscle tissues from days 33, 65, and 90 of gestation using RNA-seq, there were 228 putative lincRNAs identified. Moreover, these lincRNAs exhibit the characteristics of shorter transcripts length, longer exons, less exon numbers and lower expression level compared with protein-coding transcripts. Differential expression analysis showed that a total of 91 lincRNAs and 2638 mRNAs were differentially expressed. In addition, we also performed quantitative trait locus (QTL) mapping analysis for DE lincRNAs, 113 of 120 DE lincRNAs were localized on 2200 QTLs, we observed many QTLs involved in growth and meat quality traits. Furthermore, we predicted potential target genes of DE lincRNAs in cis or trans regulation. Gene ontology and pathway analysis reveals that potential targets of DE lincRNAs mostly were enriched in the processes and pathways related to tissue development, MAPK signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and insulin signaling pathway, which involved in skeletal muscle physiological functions. Based on cluster analysis, a co-expression network analysis of DE lincRNAs and their potential target genes indicated that DE lincRNAs highly regulated protein-coding genes associated with skeletal muscle development. In this study, many of the DE lincRNAs identified may play essential roles in pig muscle growth and muscle mass. Our study provides crucial information for exploring further the molecular mechanisms of lincRNAs during skeletal muscle development.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1264
Author(s):  
Asghar Ali ◽  
Eduard Murani ◽  
Frieder Hadlich ◽  
Xuan Liu ◽  
Klaus Wimmers ◽  
...  

Impaired skeletal muscle growth in utero can result in reduced birth weight and poor carcass quality in pigs. Recently, we showed the role of microRNAs (miRNAs) and their target genes in prenatal skeletal muscle development and pathogenesis of intrauterine growth restriction (IUGR). In this study, we performed an integrative miRNA-mRNA transcriptomic analysis in longissimus dorsi muscle (LDM) of pig fetuses at 63 days post conception (dpc) to identify miRNAs and genes correlated to fetal weight. We found 13 miRNAs in LDM significantly correlated to fetal weight, including miR-140, miR-186, miR-101, miR-15, miR-24, miR-29, miR-449, miR-27, miR-142, miR-99, miR-181, miR-199, and miR-210. The expression of these miRNAs decreased with an increase in fetal weight. We also identified 1315 genes significantly correlated to fetal weight at 63 dpc, of which 135 genes were negatively correlated as well as identified as potential targets of the above-listed 13 miRNAs. These miRNAs and their target genes enriched pathways and biological processes important for fetal growth, development, and metabolism. These results indicate that the transcriptomic profile of skeletal muscle can be used to predict fetal weight, and miRNAs correlated to fetal weight can serve as potential biomarkers of prenatal fetal health and growth.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


2019 ◽  
Vol 19 (4) ◽  
pp. 887-904
Author(s):  
Asiamah Amponsah Collins ◽  
Kun Zou ◽  
Zhang Li ◽  
Su Ying

AbstractDevelopment of the skeletal muscle goes through several complex processes regulated by numerous genetic factors. Although much efforts have been made to understand the mechanisms involved in increased muscle yield, little work is done about the miRNAs and candidate genes that are involved in the skeletal muscle development in poultry. Comprehensive research of candidate genes and single nucleotide related to poultry muscle growth is yet to be experimentally unraveled. However, over a few periods, studies in miRNA have disclosed that they actively participate in muscle formation, differentiation, and determination in poultry. Specifically, miR-1, miR-133, and miR-206 influence tissue development, and they are highly expressed in the skeletal muscles. Candidate genes such as CEBPB, MUSTN1, MSTN, IGF1, FOXO3, mTOR, and NFKB1, have also been identified to express in the poultry skeletal muscles development. However, further researches, analysis, and comprehensive studies should be made on the various miRNAs and gene regulatory factors that influence the skeletal muscle development in poultry. The objective of this review is to summarize recent knowledge in miRNAs and their mode of action as well as transcription and candidate genes identified to regulate poultry skeletal muscle development.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1417
Author(s):  
Chuan Li ◽  
Ting Xiong ◽  
Mingfang Zhou ◽  
Lei Wan ◽  
Suwang Xi ◽  
...  

Poultry skeletal muscle provides high quality protein for humans. Study of the genetic mechanisms during duck skeletal muscle development contribute to future duck breeding and meat production. In the current study, three breast muscle samples from Shan Ma ducks at embryonic day 13 (E13) and E19 were collected, respectively. We detected microRNA (miRNA) expression using high throughput sequencing following bioinformatic analysis. qRT-PCR validated the reliability of sequencing results. We also identified target prediction results using the luciferase reporter assay. A total of 812 known miRNAs and 279 novel miRNAs were detected in six samples; as a result, 61 up-regulated and 48 down-regulated differentially expressed miRNAs were identified between E13 and E19 (|log2 fold change| ≥ 1 and p ≤ 0.05). Enrichment analysis showed that target genes of the differentially expressed miRNAs were enriched on many muscle development-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathways. An interaction network was constructed using the target genes of the differentially expressed miRNAs. These results complement the current duck miRNA database and offer several miRNA candidates for future studies of skeletal muscle development in the duck.


2014 ◽  
Vol 10 (9) ◽  
pp. 983-989 ◽  
Author(s):  
Wangjun Wu ◽  
Ruihua Huang ◽  
Qinghua Wu ◽  
Pinghua Li ◽  
Jie Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document