scholarly journals Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses

2020 ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background: Small RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results: In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, p-value < 0.05) are represented by 162 (44.88 % of total differentially expressed small RNAs) molecules in shoot and 138 (7.14 %) in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13 % from total unique reads obtained under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01 %). More than 80 % of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3’-5’ exonuclease). This suggests that most small RNAs may be generated upon endonucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools.Conclusions: Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background Small RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3′-5′ exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools. Conclusions Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


2020 ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background: Small RNAs (sRNAs) are 18–24 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results: In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, p-value < 0.05) are represented by 162 (44.88 % of total differentially expressed small RNAs) molecules in shoot and 138 (7.14 %) in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, Bonferroni correction). In roots, a more abundant and diverse set of other sRNAs (1796 unique sequences, 0.13 % from total unique reads obtained under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (199 unique sequences, 0.01 %). More than 80 % of differentially expressed other sRNAs are upregulated in both organs. Additionally, in barley shoots, upregulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3’-5’ exonuclease). This suggests that most small RNAs may be generated upon endonucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identify 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools.Conclusions: Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi scarcity through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


2018 ◽  
Vol 19 (7) ◽  
pp. 2145 ◽  
Author(s):  
Houqing Zeng ◽  
Xiajun Zhang ◽  
Xin Zhang ◽  
Erxu Pi ◽  
Liang Xiao ◽  
...  

Low phosphate (Pi) availability is an important limiting factor affecting soybean production. However, the underlying molecular mechanisms responsible for low Pi stress response and tolerance remain largely unknown, especially for the early signaling events under low Pi stress. Here, a genome-wide transcriptomic analysis in soybean leaves treated with a short-term Pi-deprivation (24 h) was performed through high-throughput RNA sequencing (RNA-seq) technology. A total of 533 loci were found to be differentially expressed in response to Pi deprivation, including 36 mis-annotated loci and 32 novel loci. Among the differentially expressed genes (DEGs), 303 were induced and 230 were repressed by Pi deprivation. To validate the reliability of the RNA-seq data, 18 DEGs were randomly selected and analyzed by quantitative RT-PCR (reverse transcription polymerase chain reaction), which exhibited similar fold changes with RNA-seq. Enrichment analyses showed that 29 GO (Gene Ontology) terms and 8 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were significantly enriched in the up-regulated DEGs and 25 GO terms and 16 KEGG pathways were significantly enriched in the down-regulated DEGs. Some DEGs potentially involved in Pi sensing and signaling were up-regulated by short-term Pi deprivation, including five SPX-containing genes. Some DEGs possibly associated with water and nutrient uptake, hormonal and calcium signaling, protein phosphorylation and dephosphorylation and cell wall modification were affected at the early stage of Pi deprivation. The cis-elements of PHO (phosphatase) element, PHO-like element and P responsive element were present more frequently in promoter regions of up-regulated DEGs compared to that of randomly-selected genes in the soybean genome. Our transcriptomic data showed an intricate network containing transporters, transcription factors, kinases and phosphatases, hormone and calcium signaling components is involved in plant responses to early Pi deprivation.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lei Yan ◽  
Liang Su ◽  
Rui Li ◽  
Hao Li ◽  
Jianrong Bai ◽  
...  

Phosphate (Pi) deficiency in soil can have severe impacts on the growth, development, and production of maize worldwide. In this study, a cDNA-sequence-related amplified polymorphism (cDNA-SRAP) transcript profiling technique was used to evaluate the gene expression in leaves and roots of maize under Pi stress for seven days. A total of 2494 differentially expressed fragments (DEFs) were identified in response to Pi starvation with 1202 and 1292 DEFs in leaves and roots, respectively, using a total of 60 primer pairs in the cDNA-SRAP analysis. These DEFs were categorized into 13 differential gene expression patterns. Results of sequencing and functional analysis showed that 63 DEFs (33 in leaves and 30 in roots) were annotated to a total of 54 genes involved in diverse groups of biological pathways, including metabolism, photosynthesis, signal transduction, transcription, transport, cellular processes, genetic information, and organismal system. This study demonstrated that (1) the cDNA-SRAP transcriptomic profiling technique is a powerful method to analyze differential gene expression in maize showing advantageous features among several transcriptomic methods; (2) maize undergoes a complex adaptive process in response to low Pi stress; and (3) a total of seven differentially expressed genes were identified in response to low Pi stress in leaves or roots of maize and could be used in the genetic modification of maize.


2019 ◽  
Author(s):  
Li Ding ◽  
Xiameng Xu ◽  
Weiwen Kong ◽  
Xue Xia ◽  
Shengwei Zhang ◽  
...  

Abstract Background Nucleotide-binding site, leucine-rich repeat (NLR) genes play a critical role in rice disease resistance. However, the transcriptional activities of rice NLR genes during pathogen invasions are still unclear.Results To uncover the veil, we identified a total of 430 regular rice NLR genes with both NBS and LRR domains, consisting of 192 CNL and 238 XNL (without a CC motif) members. We performed individual and integrative analyses based on 69 samples from rice microarray after the infections of Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae (Mor). 397 NLR genes were found to be expressed at low/medium level, while 10 NLR genes were observed to show high levels of expression. 400 NLR genes were discovered to be differentially expressed in at least one sample. Further, 46 NLR genes were identified to be differentially expressed in rice response to the two pathogens and 38 of them could be validated by RNA-seq data. Six cis-regulatory elements (MYC, STRE, MYB, ABRE, G-box, and AS-1) were observed to occur frequently in the promoter regions of rice NLR genes. Ten NLR genes were selected for in lab analysis, and qRT-PCR results of seven NLR genes verified the validity of the microarray and RNA-Seq data.Conclusions Our results would shed new light on revealing the roles of NLR genes in rice resistance to Xoo and Mor.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Hailee M. Sorensen ◽  
Rebecca A. Keogh ◽  
Marcus A. Wittekind ◽  
Andrew R. Caillet ◽  
Richard E. Wiemels ◽  
...  

ABSTRACT Regulatory small RNAs (sRNAs) are known to play important roles in the Gram-positive bacterial pathogen Staphylococcus aureus; however, their existence is often overlooked, primarily because sRNA genes are absent from genome annotation files. Consequently, transcriptome sequencing (RNA-Seq)-based experimental approaches, performed using standard genome annotation files as a reference, have likely overlooked data for sRNAs. Previously, we created an updated S. aureus genome annotation file, which included annotations for 303 known sRNAs in USA300. Here, we utilized this updated reference file to reexamine publicly available RNA-Seq data sets in an attempt to recover lost information on sRNA expression, stability, and potential to encode peptides. First, we used transcriptomic data from 22 studies to identify how the expression of 303 sRNAs changed under 64 different experimental conditions. Next, we used RNA-Seq data from an RNA stability assay to identify highly stable/unstable sRNAs. We went on to reanalyze a ribosome profiling (Ribo-seq) data set to identify sRNAs that have the potential to encode peptides and to experimentally confirm the presence of three of these peptides in the USA300 background. Interestingly, one of these sRNAs/peptides, encoded at the tsr37 locus, influences the ability of S. aureus cells to autoaggregate. Finally, we reexamined two recently published in vivo RNA-Seq data sets, from the cystic fibrosis (CF) lung and a murine vaginal colonization study, and identified 29 sRNAs that may play a role in vivo. Collectively, these results can help inform future studies of these important regulatory elements in S. aureus and highlight the need for ongoing curating and updating of genome annotation files. IMPORTANCE Regulatory small RNAs (sRNAs) are a class of RNA molecules that are produced in bacterial cells but that typically do not encode proteins. Instead, they perform a variety of critical functions within the cell as RNA. Most bacterial genomes do not include annotations for sRNA genes, and any type of analysis that is performed using a bacterial genome as a reference will therefore overlook data for sRNAs. In this study, we reexamined hundreds of previously generated S. aureus RNA-Seq data sets and reanalyzed them to generate data for sRNAs. To do so, we utilized an updated S. aureus genome annotation file, previously generated by our group, which contains annotations for 303 sRNAs. The data generated (which were previously discarded) shed new light on sRNAs in S. aureus, most of which are unstudied, and highlight certain sRNAs that are likely to play important roles in the cell.


2020 ◽  
Author(s):  
Fuhua Fan ◽  
Xianwen Shang ◽  
Guijie Ding ◽  
Zijing Zhou ◽  
Jianhui Tan

Abstract Background Masson pine ( Pinus massoniana ) is primarily present in subtropical and tropical areas of China, which are severely deficient in inorganic phosphate (Pi). Although some studies identified transcriptomic and proteomic responses to Pi deficiency in Masson pine seedlings, different tissues, especially the roots, that exhibit primary responses to low-Pi stress, have not been well studied. To shed further light on the complex responses of Masson pine to Pi deficiency, a spatiotemporal experiment was performed to identify differentially expressed mRNAs and miRNAs under Pi-deficient conditions. Results Spatiotemporal analyses of 72 RNA sequencing libraries provided a comprehensive overview of the dynamic responses of Masson pine to low-Pi stress. Differentially expressed gene analysis revealed several high-affinity phosphate transporters and nitrate transporters, reflecting the crosstalk between nitrate and Pi homeostasis in plants. The MYB family was the most abundant transcription factor family identified. miRNA differential expression analysis identified several families that were associated with Pi deficiency, such as miR399. In addition, some other families, including novel miRNA families in Masson pine, were dramatically changed in response to Pi starvation. GO and KEGG analyses of these mRNAs and targets of miRNAs indicated that metabolic processes were most enriched under Pi deficiency. Conclusions This study provided abundant spatiotemporal transcriptomic information to functionally dissect the response of Masson pine seedlings to Pi deficiency, which will aid in further elucidation of the biological regulatory mechanisms of pines in response to low-Pi stress.


2019 ◽  
Author(s):  
Xiaocheng Pan ◽  
Haibo Hu

Abstract Background: Masson pine (Pinus massoniana) is primarily present within subtropical and tropical areas in China, and a number of these regions have a severe deficiency in inorganic phosphate (Pi). As a macronutrient, phosphorus plays a crucial role in plant development. Although several studies have studied the responses of masson pine to Pi starvation at the global level using RNA-Seq and comparative proteomic analyses, the detailed features in the roots that primarily respond to low Pi stress have not yet been studied. Results: This study examined the masson pine of the response of masson pine roots to a deficiency in Pi. Approximately 1,117 unigenes were shown to respond to Pi-deficiency by differential expression when analyzed using RNA-Seq. A total of 819 and 298 of these transcripts were up- and down-regulated, respectively. The results identified several phosphate transporters (PHT1, PHO88), ABC transporters and metal transporters. In particular, the ethylene response factor (ERF) was the most abundant transcription factor. Analyses of these genes, including gene ontology enrichment and the KEGG pathway analysis, indicated that the metabolic processes are the most enriched under abiotic stresses, including Pi-deficiency. Conclusions: This study provided abundant transcriptomic information to functionally dissect the response of masson pine roots to a deficiency of Pi, which will provide additional aid to elucidate the biological regulatory mechanisms that the pines use to respond to low Pi stress.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 12.2-12
Author(s):  
I. Muller ◽  
M. Verhoeven ◽  
H. Gosselt ◽  
M. Lin ◽  
T. De Jong ◽  
...  

Background:Tocilizumab (TCZ) is a monoclonal antibody that binds to the interleukin 6 receptor (IL-6R), inhibiting IL-6R signal transduction to downstream inflammatory mediators. TCZ has shown to be effective as monotherapy in early rheumatoid arthritis (RA) patients (1). However, approximately one third of patients inadequately respond to therapy and the biological mechanisms underlying lack of efficacy for TCZ remain elusive (1). Here we report gene expression differences, in both whole blood and peripheral blood mononuclear cells (PBMC) RNA samples between early RA patients, categorized by clinical TCZ response (reaching DAS28 < 3.2 at 6 months). These findings could lead to identification of predictive biomarkers for TCZ response and improve RA treatment strategies.Objectives:To identify potential baseline gene expression markers for TCZ response in early RA patients using an RNA-sequencing approach.Methods:Two cohorts of RA patients were included and blood was collected at baseline, before initiating TCZ treatment (8 mg/kg every 4 weeks, intravenously). DAS28-ESR scores were calculated at baseline and clinical response to TCZ was defined as DAS28 < 3.2 at 6 months of treatment. In the first cohort (n=21 patients, previously treated with DMARDs), RNA-sequencing (RNA-seq) was performed on baseline whole blood PAXgene RNA (Illumina TruSeq mRNA Stranded) and differential gene expression (DGE) profiles were measured between responders (n=14) and non-responders (n=7). For external replication, in a second cohort (n=95 therapy-naïve patients receiving TCZ monotherapy), RNA-seq was conducted on baseline PBMC RNA (SMARTer Stranded Total RNA-Seq Kit, Takara Bio) from the 2-year, multicenter, double-blind, placebo-controlled, randomized U-Act-Early trial (ClinicalTrials.gov identifier: NCT01034137) and DGE was analyzed between 84 responders and 11 non-responders.Results:Whole blood DGE analysis showed two significantly higher expressed genes in TCZ non-responders (False Discovery Rate, FDR < 0.05): urotensin 2 (UTS2) and caveolin-1 (CAV1). Subsequent analysis of U-Act-Early PBMC DGE showed nine differentially expressed genes (FDR < 0.05) of which expression in clinical TCZ non-responders was significantly higher for eight genes (MTCOP12, ZNF774, UTS2, SLC4A1, FECH, IFIT1B, AHSP, and SPTB) and significantly lower for one gene (TND2P28M). Both analyses were corrected for baseline DAS28-ESR, age and gender. Expression of UTS2, with a proposed function in regulatory T-cells (2), was significantly higher in TCZ non-responders in both cohorts. Furthermore, gene ontology enrichment analysis revealed no distinct gene ontology or IL-6 related pathway(s) that were significantly different between TCZ-responders and non-responders.Conclusion:Several genes are differentially expressed at baseline between responders and non-responders to TCZ therapy at 6 months. Most notably, UTS2 expression is significantly higher in TCZ non-responders in both whole blood as well as PBMC cohorts. UTS2 could be a promising target for further analyses as a potential predictive biomarker for TCZ response in RA patients in combination with clinical parameters (3).References:[1]Bijlsma JWJ, Welsing PMJ, Woodworth TG, et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 2016;388(10042):343-55.[2]Bhairavabhotla R, Kim YC, Glass DD, et al. Transcriptome profiling of human FoxP3+ regulatory T cells. Human Immunology. 2016;77(2):201-13.[3]Gosselt HR, Verhoeven MMA, Bulatovic-Calasan M, et al. Complex machine-learning algorithms and multivariable logistic regression on par in the prediction of insufficient clinical response to methotrexate in rheumatoid arthritis. Journal of Personalized Medicine. 2021;11(1).Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document