Microstructure and Microsegregation Characterization of Laser Surfaced Remelted Al-3wt%Cu Alloys
Abstract Solidification rates during laser remelting of solid metals occur under solidification conditions that are far from equilibrium conditions. The microstructural evolution and microsegregation behaviors are affected by these conditions. This study comprised an experimental characterization of the ultra-fine microstructure and microsegregation in laser surface remelted regions of a hypoeutectic Al-Cu alloy. The laser scan speed, which controls the cooling rate within the remelted region, was observed to have a significant effect on microstructural features and microsegregation. Dendrite arm spacing was determined to decrease with increasing scan speed and depended on location within the melt pool. A transition of the dendrite morphology was also observed in the melt pools. This transition, which is attributed to the grain orientation change influenced by the laser beam movement, was experimentally characterized. The measured microsegregation profiles show decreasing microsegregation as cooling rate increases which is typically of increasing undercooling and non-equilibrium solidification.