scholarly journals Kinetic compartmentalization by unnatural reaction for itaconate production

Author(s):  
Daeyeol Ye ◽  
Myung Hyun Noh ◽  
Jo Hyun Moon ◽  
Alfonsina Milito ◽  
Minsun Kim ◽  
...  

Abstract Physical compartmentalization of metabolisms using membranous organelles in eukaryotes is helpful for chemical biosynthesis to ensure the availability of substrates from competitive metabolic reactions. Bacterial hosts lack such a membranous system, which is one of the major limitations for efficient metabolic engineering. Here, we introduced kinetic compartmentalization as an alternative strategy to enable substrate availability from competitive reactions. This method utilizes a non-natural biochemical reaction performed by an engineered enzyme to kinetically isolate the metabolic pathways and ensure substrate availability for the desired reaction. As a proof of concept, we could successfully demonstrate kinetic separation for efficient itaconate production from acetate in Escherichia coli, mimicking the native mitochondrial membrane system in Aspergillus species. Despite the utilization of the non-preferred carbon source, kinetic compartmentalization could lead to substantial increases of itaconate in both yield and titer, suggesting enough potential of our strategy for broad applications in diverse engineering.

Author(s):  
Maheswara Reddy Mallu ◽  
Shaik Mohammad Anjum ◽  
Sai Sri Samyutha Katravulapalli ◽  
Sri Sai Priya Avuthu ◽  
Koteswara Reddy Gujjula ◽  
...  

Over the past decade, metabolic engineering has emerged as an active and distinct discipline characterized by its over-arching emphasis on integration. In practice, metabolic engineering is the directed improvement of cellular properties through the application of modern genetic methods. The concept of metabolic regulations deals with the varied and innumerable metabolic pathways that are present in the human body. A combination of such metabolic reactions paves the way to the proper functioning of different physiological and biological processes. Dealing with the adversities of a disease, engineering of novel metabolic pathways showcases the potential of metabolic engineering and its application in the therapeutic treatment of diseases. A proper and deeper understanding of the metabolic functions in the human body can be known from simulated yeast models. This review gives a brief understanding about the interactions between the molecular set of metabolome and its complexity.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 82 ◽  
Author(s):  
Jungyeon Kim ◽  
Yu Cheong ◽  
Inho Jung ◽  
Kyoung Kim

L-Fucose, one of the major monomeric sugars in brown algae, possesses high potential for use in the large-scale production of bio-based products. Although fucose catabolic pathways have been enzymatically evaluated, the effects of fucose as a carbon source on intracellular metabolism in industrial microorganisms such as Escherichia coli are still not identified. To elucidate the effects of fucose on cellular metabolism and to find clues for efficient conversion of fucose into bio-based products, comparative metabolomic and transcriptomic analyses were performed on E. coli on L-fucose and on D-glucose as a control. When fucose was the carbon source for E. coli, integration of the two omics analyses revealed that excess gluconeogenesis and quorum sensing led to severe depletion of ATP, resulting in accumulation and export of fucose extracellularly. Therefore, metabolic engineering and optimization are needed for E. coil to more efficiently ferment fucose. This is the first multi-omics study investigating the effects of fucose on cellular metabolism in E. coli. These omics data and their biological interpretation could be used to assist metabolic engineering of E. coli producing bio-based products using fucose-containing brown macroalgae.


2011 ◽  
Vol 28 (7) ◽  
pp. 1587-1592 ◽  
Author(s):  
Sea-Mi Joung ◽  
Nagendra Prasad Kurumbang ◽  
Byoung-In Sang ◽  
Min-Kyu Oh

2017 ◽  
Author(s):  
Triana N. Dalia ◽  
Chelsea A. Hayes ◽  
Sergey Stolyar ◽  
Christopher J. Marx ◽  
James B. McKinlay ◽  
...  

ABSTRACTVibrio natriegenshas recently emerged as an alternative toEscherichia colifor molecular biology and biotechnology, but low-efficiency genetic tools hamper its development. Here, we uncover how to induce natural competence inV. natriegensand describe methods for multiplex genome editing by natural transformation (MuGENT). MuGENT promotes integration of multiple genome edits at high-efficiency on unprecedented timescales. Also, this method allows for generating highly complex mutant populations, which can be exploited for metabolic engineering efforts. As a proof-of-concept, we attempted to enhance production of the value added chemical poly-β-hydroxybutyrate (PHB) inV. natriegensby targeting the expression of nine genes involved in PHB biosynthesis via MuGENT. Within 1 week, we isolated edited strains that produced ~100 times more PHB than the parent isolate and ~3.3 times more than a rationally designed strain. Thus, the methods described here should extend the utility of this species for diverse academic and industrial applications.


Sign in / Sign up

Export Citation Format

Share Document