scholarly journals IFN-γ Enhances the Efficacy of Exosomes Derived from Mesenchymal Stem Cells in Myocardial Infarction Rats via miR-21 Stimulated by STAT1

Author(s):  
Jian Zhang ◽  
Yao Lu ◽  
Yangming Mao ◽  
Yue Yu ◽  
Tianyu Wu ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) activated with IFN-γ elicit more powerful physical effects. Exosomes (Exos) secreted from MSCs have protective against myocardial injury. The aim of this study was to investigate whether Exsos derived from IFN-γ-pretreated MSCs exhibit more potent cardioprotective function and the underlying mechanisms. Methods: Exos were isolated from MSCs (Ctrl-Exo) and IFN-γ-primed MSCs (IFN-γ-Exo) and were then delivered to H9c2 cells or human umbilical vein endothelial cells (HUVECs) in vitro under oxygen and glucose deprivation (OGD) condition or in vivo in an infarcted rat heart. RNA sequencing was to identify the different expressed functional transcription factor (TF). Quantitative reverse transcription-PCR (qPCR) was to confirm the upregulated TF and miRNA in IFN-γ-primed MSCs. Dual-luciferase reporter gene assay were to analyze the transcriptional regulation of miRNAs by STAT1. The target of miR-21-5p (miR-21) was disclosed by luciferase reporter assays and qPCR. The function of BTG2 was verified in vitro under OGD condition.Result: IFN-γ-Exo accelerated migration, tube-like structure formation, and prevented H9c2 from OGD-induced apoptosis. Similarly, IFN-γ-Exo leaded to further reduction in fibrosis size, reduced cardiomyocyte apoptosis and improved cardiac function compared to Ctrl-Exo. miR-21 was significantly upregulated in both IFN-γ-primed MSCs and IFN-γ-Exo. STAT1 transcriptionally induced miR-21 expression. Up-regulated miR-21 can inhibit the expression of BTG2. BTG2 promoted H9c2 cells apoptosis and reversed the protective effect of miR-21 under OGD environment.Conclusion: IFN-γ-Exo have enhanced therapeutic efficacy against acute MI possibly through promoting angiogenesis and anti-apoptotic effect through increasing the level of miR-21, which directly targeted on BTG2.

2020 ◽  
Vol 49 (5) ◽  
pp. 462-473
Author(s):  
Jingwen Ma ◽  
Xiaohua Tao ◽  
Youming Huang

<b><i>Background:</i></b> Hemangioma (Hem) is a benign tumor commonly seen in infancy with a relative high morbidity. Human umbilical vein endothelial cell (HUVEC)-derived extracellular vesicles (EVs) are actively participated in Hem. Therefore, this study is designed to figure out the underlying mechanism of HUVEC-derived EVs in Hem. <b><i>Methods:</i></b> Initially, EVs were separated from HUVECs and identified. HUVEC-derived EVs in normoxia or hypoxia were then cultivated with Hem endothelial cells (HemECs) to test the proliferation, apoptosis, and migration of HemECs. Microarray analysis was performed to select microRNAs (miRs) with differential expression. miR-210 in hypoxia-induced HUVECs was silenced, and the relevant EVs were extracted and then co-cultured with HemECs to perform biological effect experiments. Then, the target relation between miR-210 and homeobox A9 (HOXA9) was identified by the dual luciferase reporter gene assay and RNA immunoprecipitation assay. Moreover, xenograft transplantation was also applied to confirm the in vitro experiments. <b><i>Results:</i></b> Hypoxia-induced HUVECs promoted release of EVs, which were absorbed by HemECs. Hypoxia-induced HUVEC-EVs promoted HemEC proliferation and migration and inhibited apoptosis. miR-210 from the hypoxia-induced HUVEC-EVs was highly expressed and promoted HemEC growth. Silencing miR-210 expression in the hypoxia-induced HUVEC-EVs suppresses Hem development in vivo. In addition, miR-210 targeted HOXA9. <b><i>Conclusion:</i></b> Silencing miR-210 in HUVEC-derived EVs could suppress Hem by targeting HOXA9. This investigation may provide novel insights for Hem treatment.


Author(s):  
Yichao Wang ◽  
Pan Wang ◽  
Lei Zhao ◽  
Xiaoying Chen ◽  
Zhu Lin ◽  
...  

Objective: In this study, we focused on the potential mechanism of miRNAs carried by human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSCs-exo) in breast cancer (BC).Methods: RT-qPCR was conducted for the expression of miR-224-5p and HOXA5 in tissues and cells. After co-culture of exosomes and MCF-7 or MDA-MB-231 cells, the cell proliferation was observed by MTT and cell colony formation assay, while apoptosis was measured by flow cytometry. In addition, the expression of HOXA5 and autophagy pathway-related proteins LC3-II, Beclin-1 and P62 was detected by western blotting. And immunofluorescence was applied for detection of LC3 spots. The binding of miR-224-5p to HOXA5 was verified by the luciferase reporter gene assay and RNA-binding protein immunoprecipitation assay. Finally, in vivo experiment was performed to investigate the effect of miR-224-5p on BC growth.Results: MiR-224-5p was up-regulated and HOXA5 was down-regulated in BC tissues and cells. HOXA5 was confirmed to be the target gene of miR-224-5p. MiR-224-5p carried by hUCMSCs-exo was able to promote the proliferation and autophagy of BC cells, while inhibited apoptosis. Bases on xenograft models in nude mice, it was also revealed that miR-224-5p carried by hUCMSCs-exo could regulate autophagy and contribute to the occurrence and development of BC in vivo.Conclusion: MiR-224-5p carried by hUCMSCs-exo can regulate autophagy via inhibition of HOXA5, thus affecting the proliferation and apoptosis of BC cells.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2015 ◽  
Vol 37 (5) ◽  
pp. 1956-1966 ◽  
Author(s):  
Shiping Liu ◽  
Peng Feng

Background/Aims: Increasing evidence has shown that miR-203 plays important role in human cancer progression. However, little is known about the function of miR-203 in osteosarcoma (OS). Methods: The expression of miR-203 in OS tissues and cell lines were examined by qRT-PCR. The biological role of miR-20 in OS cell proliferation was examined in vitro and in vivo. The targets of miR-203 were identified by a luciferase reporter gene assay. Results: miR-203 was down regulated in OS tissues and cell lines; decreased miR-203 was associated with a poor overall survival in OS patients. Restoration of miR-203 expression reduced cell growth in vitro and suppressed tumorigenicity in vivo. In contrast, inhibition of miR-203 stimulated OS cell growth both in vitro and in vivo. In addition, TANK binding kinase 1 (TBK1) was identified as a direct target of miR-203; overexpression of TBK1 partly reversed the suppressive effects of miR-203. Furthermore, TBK1 was found up-regulated and inversely correlated with miR-203 in OS tissues. Conclusion: Taken together, these findings suggest that miR-203 acts as a tumor suppressor via regulation of TBK1 expression in OS progression, and miR-203 may be a promising therapeutic target for OS.


2021 ◽  
Author(s):  
Han Wang ◽  
Yingying Zhou ◽  
Siyang Zhang ◽  
Ya Qi ◽  
Min Wang

Abstract Background Small nucleolar RNA host gene 16 (SNHG16) and pre-mRNA processing factor 6(PRPF6) play vital roles in regulatory mechanisms of multiple cancers, but the mechanisms in ovarian cancer (OC) remains poorly understood. Methods The expression of SNHG16 transcripts-SNHG16-L/S in OC tissues were analyzed by real-time PCR (RT-PCR). The expression of PRPF6 in OC tissues were detected by Immunohistochemistry (IHC). Tumorigenesis, epithelial-to-mesenchymal transition (EMT) and PTX-resistance were detected by western blot, transwell, CCK-8 assays, colony formation assays and flow cytometry analyses. Molecular interactions were examined by dual-luciferase reporter gene assay, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP). Results The results indicated the expression of SNHG16-L/S was opposite in chemo-resistance and chemo-sensitivity tissues of OC. And SNHG16-L/S had different effects on the progression and PTX-resistance of OC cells. SNHG16-L inhibited GATA binding protein 3 (GATA3) transcription through CCAAT/enhancer-binding protein b (CEBPB) to further promote tumorigenesis, EMT and PTX-resistance of OC. Moreover, PRPF6 was upregulated in chemo-resistance tissues of OC. PRPF6 promoted tumorigenesis and PTX-resistance in vitro and in vivo. Mechanistically, PRPF6 induced the alternative splicing of SNHG16 to downregulate SNHG16-L, which further mediated progression and PTX-resistance through upregulating GATA3 in OC. Conclusions Totally, the results demonstrated that PRPF6 promoted progression and PTX-resistance in OC through SNHG16-L/CEBPB/GATA3 axis. Thus, PRPF6 may become a valuable target for OC therapy.


2020 ◽  
Author(s):  
Ying Liu ◽  
Dan Lin ◽  
Haiyang Zhang ◽  
Huiya Wang ◽  
Ting Deng ◽  
...  

Abstract BACKGROUNDCancer-associated cachexia (CAC) is defined as a multifactorial syndrome including depletion of adipose tissue and skeletal muscle. Adipose tissue wasting, as a key characteristic of CAC, occurs early and is related with poor survival. However, the influence of exosomes on adipo-differentiation in CAC remained be mysterious.METHODSOil-red staining, western blotting, and real-time polymerase chain reaction (RT-PCR) were used to investigate the adipo-differentiation capacity of A-MSCs from GC patients and healthy donors. Adipo-differentiation capacity of A-MSCs treated with exosomes from GES-1 or GC cell lines was also detected. To further explore the effects of exosomal miR-155 on adipo-differentiation in vitro, we carried out luciferase reporter assay. Finally, to evaluate the function of exosomal miR-155 in vivo, BALB/c mice were subcutaneously transplanted with SGC7901 cells transfected with lentivirus containing a miR-155 overexpressing (miR-155 OE) sequence or miR-155 shRNA (miR-155 KO) or control lentivirus(NC) to observe the change of adipo-differentiation of A-MSCs.RESULTSWe showed that miR-155 was high expressed in adipose mesenchymal stem cells (A-MSCs) isolated from GC patients, which exhibited significantly suppressed adipo-differentiation. Mechanistically, targeting C/EPBβ and suppressing C/EPBα and PPARγ by GC exosomal miR-155 was demonstrated to be involved in impairing the differentiation of A-MSCs into adipocytes. The expression of C/EPBβ C/EPBα and PPARγ were rescued through downregulating miR-155 in GC exosomes. Moreover, overexpression of miR-155 improved cancer cachexia in tumor-implanted mice, charactered by weight loss, tumor progression and low expression of C/EPBβ, C/EPBα, and PPARγ in A-MSCs as well as FABP4 in tumor-related adipose tissue. Decreasing level of miR-155 in implanted tumor blocked the anti-adipogenic effects of GC. CONCLUSIONGC exosomsal miR-155 suppressed adipo-differentiation of A-MSCs via targeting C/EPBβ of A-MSCs plays a crucial role in CAC.


2021 ◽  
Author(s):  
Zhang Jieling ◽  
Li Kai ◽  
Zheng Huifen ◽  
Zhu Yiping

Abstract Background: MicroRNAs play an important role in the genesis and progression of tumors, including colorectal cancer (CRC), which has a high morbidity and mortality rate. In this research, the role of miR-495-3p and HMGB1 in CRC was investigated.Methods: We performed qRT-PCR to detect the expression of miR-495-3p in colorectal cancer tissues and cell lines. Functional experiments such as CCK-8 assay, EDU assay, Transwell assay and apoptosis assay were conducted to explore the effects of miR-495-3p on the proliferation, migration and apoptosis of CRC cells in vitro. Then, the use of database prediction, dual-luciferase reporter gene assay and functional experiments verified the role of miR-495-3p target gene HMGB1 in CRC. Finally, rescue experiments was performed to investigate whether overexpression of HMGB1 could reverse the inhibitory effect of miR-495-3p on CRC cell proliferation in vivo and in vitro.Results: miR-495-3p was down-regulated in colorectal cancer tissues and cell lines, and could inhibit the proliferation and migration of colorectal cancer cells, and promote cell apoptosis. The database prediction and dual-luciferase reporter gene assay showed that HMGB1 was the downstream target gene of miR-495-3p. We finally demonstrated that miR-495-3p inhibited CRC cell proliferation by targeting HMGB1 in vitro and in vivo.Conclusion: Our research shows that miR-495-3p inhibits the progression of colorectal cancer by down-regulating the expression of HMGB1, which indicates that miR-495-3p may become a potential therapeutic target for colorectal cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wanshun Liu ◽  
Binyu Wang ◽  
Ao Duan ◽  
Kai Shen ◽  
Qi Zhang ◽  
...  

Abstract Background Osteosarcoma (OS) is a malignant tumor originating from mesenchymal stem cells, and has an extremely high fatality rate and ability to metastasize. Although mounting evidence suggests that miR-769-5p is strongly associated with the malignant progression and poor prognosis of various tumors, the exact role of miR-769-5p in OS is still unclear. Therefore, this study aimed to explore the relationship between miR-769-5p and the malignant progression of OS, and its underlying mechanism of action. Methods miR-769-5p expression was analyzed in GSE28423 from the GEO database and measured in OS clinical specimens and cell lines. The effects of miR-769-5p on OS proliferation, migration and invasion were measured both in vivo and in vitro. In addition, bioinformatics analyses and luciferase reporter assays were used to explore the target genes of miR-769-5p. Rescue experiments were also conducted. Moreover, a co-culture model was used to test the cell interaction between bone mesenchymal stem cells (BMSC) and OS cells. Results We found that miR-769-5p is highly expressed in OS clinical specimens and cell lines. In vivo and in vitro experiments also showed that miR-769-5p significantly promoted the proliferation, migration and invasion of OS cells. Dual-specific phosphatase 16 (DUSP16) was negatively associated with miR-769-5p expression in OS cells and tissue samples and was validated as the downstream target by luciferase reporter assay and western blotting. Rescue experiments showed that DUSP16 reverses the effect of miR-769-5p on OS cells by negatively regulating the JNK/p38 MAPK signaling pathway. Additionally, the results of the co-culture of BMSCs and OS cells confirmed that miR-769-5p was transferred from BMSCs to OS cells through exosomes. Conclusions In summary, this study demonstrates for the first time that BMSC-derived exosomal miR-769-5p promotes OS proliferation and metastasis by targeting DUSP16 and activating the JNK/p38 MAPK signaling pathway, which could provide rationale for a new therapeutic strategy for OS.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Lukun Zhou ◽  
Shuang Liu ◽  
Zhao Wang ◽  
Jianfeng Yao ◽  
Wenbin Cao ◽  
...  

Abstract Background Liver injury associated with acute graft-versus-host disease (aGVHD) is a frequent and severe complication of hematopoietic stem cell transplantation and remains a major cause of transplant-related mortality. Bone marrow-derived mesenchymal stem cells (BM-MSCs) has been proposed as a potential therapeutic approach for aGVHD. However, the therapeutic effects are not always achieved. In this study, we genetically engineered C57BL/6 mouse BM-MSCs with AKT1 gene and tested whether AKT1-MSCs was superior to control MSCs (Null-MSCs) for cell therapy of liver aGVHD. Results In vitro apoptosis analyses showed that, under both routine culture condition and high concentration interferon-γ (IFN-γ) (100ng/mL) stimulation condition, AKT1-MSCs had a survival (anti-apoptotic) advantage compared to Null-MSCs. In vivo imaging showed that AKT1-MSCs had better homing capacity and longer persistence in injured liver compared to Null-MSCs. Most importantly, AKT1-MSCs demonstrated an enhanced immunomodulatory function by releasing more immunosuppressive cytokines, such as IL-10. Adoptive transfer of AKT1-MSCs mitigated the histopathological abnormalities of concanavalin A(ConA)-induced liver injury along with significantly lowered serum levels of ALT and AST. The attenuation of liver injury correlated with the decrease of TNF-α and IFN-γ both in liver tissue and in the serum. Conclusions In summary, BM-MSCs genetically modified with AKT1 has a survival advantage and an enhanced immunomodulatory function both in vitro and in vivo and thus demonstrates the therapeutic potential for prevention and amelioration of liver GVHD and other immunity-associated liver injuries.


2021 ◽  
Vol 11 (9) ◽  
pp. 1818-1824
Author(s):  
Jiangbo Xiong ◽  
Sheng Liu ◽  
Bin Xiang ◽  
Weibo Zhang ◽  
Jun Du ◽  
...  

This study aims to dissect the effects of bone marrow mesenchymal stem cells (BMSC) on the in vitro activity of glioma cells and the underlying mechanisms. The glioma cells were transfected with miR-133 mimics, RACK1-Vector, negative control (NC) and miR-133 mimic+RACK1-Vector, respectively, and then co-cultured with BMSC followed by analysis of miR-133 expression via PCR, apoptosis via flow cytometry, proliferation via CCK-8, invasion and migration via Transwell assay, the expression of proteins involved in apoptosis, anti-apoptosis, invasiveness and RACK1 by western blot, and the targeting relationship between miR-133 and RACK1 by dual-luciferase reporter gene assay. In comparison with normal glial cells, glioma cells exhibited a significantly diminished miR-133 level. miR-133 was upregulated in glioma cells after co-culture with BMSC, along with significantly restrained proliferation rate, migration and invasion activities as well as reduced protein levels (MMP-2, Vimentin, N-cadherin and MMP-9). Mechanistic study showed that miR-133 can retard the expression of RACK1, thereby impeding the invasion, migration and proliferation activities of cells while triggering cell apoptosis. In conclusion, BMSC-originated miR-133 can impede the migration and invasion while enhancing the apoptosis of glioma cells via targeting RACK1.


Sign in / Sign up

Export Citation Format

Share Document