scholarly journals Parameter Identification and The Multi-Switching Sliding Mode Combination Synchronization of Fractional Order Non-Identical Chaotic System Under Stochastic Disturbances

Author(s):  
Weiqiu Pan ◽  
Tianzeng Li ◽  
Yu Wang

Abstract This paper deals with the issue of the multi-switching sliding mode combination synchronization (MSSMCS) of fractional order (FO) chaotic systems with different structures and unknown parameters under double stochastic disturbances (SD) utilizing the multi-switching synchronization method. The stochastic disturbances are considered as nonlinear uncertainties and external disturbances. Our theoretical part is divided into two cases, namely, the dimension of the drive-response system are different (or same). Firstly, a FO sliding surface was established in term of fractional calculus. Secondly, depended on the FO Lyapunov stability theory, the adaptive control technology and sliding mode control technique, the multi-switching adaptive controllers (MSAC) and some suitable multi-switching adaptive updating laws (MSAUL) are designed, so that the state variables of the drive systems are synchronized with the different state variables of the response systems. Simultaneously, the unknown parameters are assessed and the upper bound of stochastic disturbances are examined. Selecting the suitable scale matrices, the multi-switching projection synchronization, multi-switching complete synchronization, and multi-switching anti-synchronization will become special cases of MSSMCS. Finally, examples are displayed to certify the usefulness and validity of the demonstrated scheme via MATLAB.

Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 599 ◽  
Author(s):  
Chao Song ◽  
Shumin Fei ◽  
Jinde Cao ◽  
Chuangxia Huang

This paper mainly focuses on the robust synchronization issue for drive-response fractional-order chaotic systems (FOCS) when they have unknown parameters and external disturbances. In order to achieve the goal, the sliding mode control scheme only using output information is designed, and at the same time, the structures of a sliding mode surface and a sliding mode controller are also constructed. A sufficient criterion is presented to ensure the robust synchronization of FOCS according to the stability theory of the fractional calculus and sliding mode control technique. In addition, the result can be applied to identical or non-identical chaotic systems with fractional-order. In the end, we build two practical examples to illustrate the feasibility of our theoretical results.


Author(s):  
A .Othman Almatroud, Et. al.

This paper investigates the anti–synchronization problem between two different fractional-order chaotic and hyperchaotic systems using the modified adaptive sliding mode control technique in the presence of uncertain system parameters. To construct the proposed scheme, a simple sliding surface is first designed. Then, the modified adaptive sliding-mode controller is derived to guarantee the occurrence of sliding motion. Based on the Lyapunov stability theory, the adaptive controllers with corresponding parameter update laws are designed such that the different chaotic and hyperchaotic systems can be anti–synchronized asymptotically. Finally, numerical simulations are presented to demonstrate the efficiency of the proposed anti–synchronization scheme.


Author(s):  
Ajit K. Singh ◽  
Vijay K. Yadav ◽  
S. Das

In this article, the authors have proposed a novel scheme for the dual combination synchronization among four master systems and two slave systems for the fractional order complex chaotic systems. Dual combination synchronization for the integer order has already been investigated in real space; but for the case of fractional order in complex space, it is the first of its kind. Due to complexity and presence of additional variable, it will be more secure and interesting to transmit and receive signals in communication theory. Based on the Lyapunov stability theory, six complex chaotic systems are considered and corresponding controllers are designed to achieve synchronization. The special cases, such as combination synchronization, projective synchronization, complete synchronization, and many more, can be derived from the proposed scheme. The corresponding theoretical analysis and numerical simulations are shown to verify the feasibility and effectiveness of the proposed dual combination synchronization scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Yan

This paper deals with the synchronization of a class of fractional order chaotic systems with unknown parameters and external disturbance. Based on the Lyapunov stability theory, a fractional order sliding mode is constructed and a controller is proposed to realize chaos synchronization. The presented method not only realizes the synchronization of the considered chaotic systems but also enhances the robustness of sliding mode synchronization. Finally, some simulation results demonstrate the effectiveness and robustness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Meng ◽  
Xiaohong Wang

Adaptive synchronization for a class of uncertain delayed fractional-order Hopfield neural networks (FOHNNs) with external disturbances is addressed in this paper. For the unknown parameters and external disturbances of the delayed FOHNNs, some adaptive estimations are designed. Firstly, a fractional-order switched sliding surface is proposed for the delayed FOHNNs. Then, according to the fractional-order extension of the Lyapunov stability criterion, a fractional-order sliding mode controller is constructed to guarantee that the synchronization error of the two uncertain delayed FOHNNs converges to an arbitrary small region of the origin. Finally, a numerical example of two-dimensional uncertain delayed FOHNNs is given to verify the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-33 ◽  
Author(s):  
Jiacai Huang ◽  
Hongsheng Li ◽  
YangQuan Chen ◽  
Qinghong Xu

A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC), which is insensitive to uncertainties and load disturbances, is studied widely in the application of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on the integer-order integration or differentiation of the state variables, while in this proposed robust FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the state variables. In fact, the conventional SMC method can be seen as a special case of the proposed FOSMC method. The performance and robustness of the proposed method are analyzed and tested for nonlinear load torque disturbances, and simulation results show that the proposed algorithm is more robust and effective than the conventional SMC method.


Author(s):  
Eming Chen

Abstract In the flexible robot force control situations, if there exists a discontinuity between the robot tip sensor and the work-piece, the robot contact process becomes a nonlinear system control problem. The control tasks require the robot hand to switch from free motion control to contact motion control. The inevitable high impact force tends to let the system become unstable. The purpose of this paper is to investigate the control of the manipulator during this process. In this paper, dynamic models of the flexible link manipulator in both non-contacted and contacted modes are first derived. Due to the fact that the arm vibration shape functions are changed between the two modes, a transform matrix will be used to transform the controlled state variables, such as generalized position and velocity. A nonlinear sliding mode control technique has been implemented in an attempt to extinguish the chatter phenomenon and settle quickly to the desired setpoint.


Author(s):  
Samir Ladaci ◽  
Karima Rabah ◽  
Mohamed Lashab

This chapter investigates a new control design methodology for the synchronization of fractional-order Arneodo chaotic systems using a fractional-order sliding mode control configuration. This class of nonlinear fractional-order systems shows a chaotic behavior for a set of model parameters. The stability analysis of the proposed fractional-order sliding mode control law is performed by means of the Lyapunov stability theory. Simulation examples on fractional-order Arneodo chaotic systems synchronization are provided in presence of disturbances and noises. These results illustrate the effectiveness and robustness of this control design approach.


Sign in / Sign up

Export Citation Format

Share Document