Research On Exercise Fatigue Estimation Method of Pilates Rehabilitation Based On ECG and sEMG Feature Fusion
Abstract Purpose. Fatigue estimation is of great significance to improve the accuracy of intention recognition and avoid secondary injury in Pilates rehabilitation. Surface electromyography (sEMG) is used to estimate fatigue with low and unstable recognition rates. To improve the rate, this paper fused electrocardiogram (ECG) signal and sEMG signal under three different states, and the classification model of the improved proved particle swarm optimization support vector machine (IPSO-SVM) algorithm was established. Methods. Twenty subjects performed 150 minutes of Pilates rehabilitation exercise. ECG and sEMG signals were collected at the same time. After necessary preprocessing, the IPSO-SVM classification model based on feature fusion was established to identify three different fatigue states (relaxed, transition, and tired). The model effects of different classification algorithms and different fused data types were compared. Results. Compared with common physiological signal classification methods such as BP neural network algorithm(BPNN), K-nearest neighbor(KNN), and Linear discriminant analysis(LDA), IPSO-SVM had obvious advantages in the classification effect of sEMG and ECG signals, the average recognition rate was 87.83%. The recognition rates of sEMG and ECG fusion feature classification models were 94.25%, 92.25%, 94.25%. The recognition accuracy and model performance was significantly improved. Conclusion. The sEMG and ECG signal after feature fusion form a complementary mechanism. At the same time, IPOS-SVM can accurately detect the fatigue state in the process of Pilates rehabilitation. This study establishes technical support for establishing relevant man-machine devices and improving the safety of Pilates rehabilitation.