Plasmonic Sensor Based On Silver Nanoparticles For The Detection of Glucose
Abstract Sensors for detecting glucose concentrations are crucial to medical testing. Here, we introduce silver nanoparticles (Ag NPs) uniformly distributed in space to investigate the sensing properties for detecting glucose by using the finite-different time-domain (FDTD) and experimental methods. The results show that the transmittance of dip for the proposed structural model gradually decreases as the number of Ag NPs increases, when the concentration of glucose is constant. And the transmission spectrum shows slight red shift with the increasing of the glucose concentration. Moreover, the simulation results are in agreement with the experimental results. Especially, the maximum sensitivity S=1144.07407 nm/RIU can be realized for glucose concentration variation from 0.3 to 0.4 mol/L. The research results reveal an excellent sensing property that has important application value in medical detection.