Specific alternative splicing and polyadenylation facilitate metastasis mediated by CTC clusters
Abstract Circulating tumor cell (CTC) clusters possess a much higher capability to seed metastasis than single CTCs. However, the mechanism underlying this phenomenon is still elusive and no reports have investigated the role of posttranscriptional RNA regulation in CTC clusters. Here, we compared alternative splicing (AS) and alternative polyadenylation (APA) profiles between single CTCs and CTC clusters. 994 and 836 AS events were identified in single CTCs and CTC clusters, separately. About ~20% of AS events exhibited alterations between both cell types. The differential splicing of SRSF6 was a core event that caused AS profiles’ disturbance and made CTC clusters more dangerous. Concerning APA, we identified global 3’ UTRs lengthening in CTC clusters compared with single CTCs. This change was mainly regulated by 14 core APA factors, especially PPP1CA. The altered APA profiles boosted the cell cycle of CTC clusters and reflected that CTC clusters endured less oxidative stress. Our study investigated the posttranscriptional regulation mechanisms in CTC clusters, found that the perturbation of AS and APA contributed to the superiority of CTC clusters compared with single CTCs, and laid the foundation for developing antisense oligonucleotides that inhibit metastasis by reducing CTC clusters.