scholarly journals Palau’s warmest reefs harbor a thermally tolerant coral lineage that thrives across different habitats

Author(s):  
Hanny Rivera ◽  
Anne Cohen ◽  
Janelle Thompson ◽  
Iliana Baums ◽  
Michael Fox ◽  
...  

Abstract Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau’s Rock Islands experience chronically higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau’s cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four P cf. lobata genetic lineages. On Palau’s outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance and no consistent growth trade-off. One of these lineages also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21st century climate change.

2016 ◽  
Author(s):  
Shraddha Karve ◽  
Devika Bhave ◽  
Dhanashri Nevgi ◽  
Sutirth Dey

AbstractIn nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. While both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations ofEscherichia coliunder complex (i.e. stressful combinations of pH, H2O2and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade-off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2O2and NaCl) for the same duration. The fluctuation-selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, while the populations selected under constant stresses experienced severe tradeoffs in many of the environments other than those in which they were selected, the fluctuation-selected populations could by-pass the across-environment trade-offs completely. Interestingly, trade-offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade-off structure in evolving populations.


2014 ◽  
Vol 62 (1) ◽  
pp. 48 ◽  
Author(s):  
C. H. Lusk ◽  
K. M. Sendall ◽  
P. J. Clarke

A trade-off between shade tolerance and growth in open conditions is widely believed to underlie the dynamics of humid forests. Little is known about how the growth versus shade tolerance trade-off interacts with other major trade-offs associated with differential adaptation to major environmental factors besides light. We asked whether the growth versus shade tolerance trade-off differed between subtropical rainforest tree assemblages native to basaltic (fertile) and rhyolitic (infertile) soils in northern New South Wales, because of the allocational costs of adaptation to low nutrient availability. Seedling relative growth rates of six basalt specialists and five rhyolite specialists were measured in a glasshouse and the minimum light requirements of each species were quantified in the field by determining the 10th percentile of juvenile tree distributions in relation to understorey light availability. A similar range of light requirements was observed in the two assemblages, and although the two fastest growing species were basalt specialists, seedling growth rates did not differ significantly between the two substrates. The overall relationship between light requirements and growth rate was weak, and there was no compelling evidence that the slope or elevation of this relationship differed between the two assemblages. Growth rates were significantly correlated, overall, with specific leaf area, and marginally with leaf area ratio. The apparent similarity of the growth versus shade tolerance trade-off in the two suites of species could reflect effects of leaf nutrient content on respiration rates; basalt specialists tended to have a smaller root mass fraction, but this may have been offset by the effects of leaf nitrogen status on respiration rates, with higher respiration rates expected on fertile basaltic soils. However, the results might also partly reflect impairment of the field performance of two basalt specialists that were heavily attacked by natural enemies.


2019 ◽  
Author(s):  
Avril Weinbach ◽  
Nicolas Loeuille ◽  
Rudolf P. Rohr

AbstractRecent pollinator population declines threaten pollination services and greatly impact plant-pollinator coevolution. We investigate how such evolutionary effects affect plant-pollinator coexistence. Using eco-evolutionary dynamics, we study the evolution of plant attractiveness in a simple pollinator-plant model, assuming an allocation trade-off between attractiveness (e.g. nectar production, flower shape and size) and plant intrinsic growth rates. First, we investigated how attractiveness evolution changes species persistence, biomass production, and the intensity of the mutualism (as a proxy for pollination services). We show that the shape of the allocation trade-off is key in determining the outcome of the eco-evolutionary dynamics and that concave trade-offs allow convergence to stable plant-pollinator coexistence. Then we analyse the effect of pollinator population declines on the eco-evolutionary dynamics. Decreasing intrinsic growth rates of pollinator population results in a plant-evolution driven disappearance of the mutualistic interaction, eventually leading to pollinator extinction. With asymmetric mutualism favouring the pollinator, the evolutionary disappearance of the mutualistic interaction is delayed. Our results suggest that evolution may account for the current collapse of pollination systems and that restoration attempts should be enforced early enough to prevent potential negative effects driven by plant evolution.


2019 ◽  
Vol 116 (30) ◽  
pp. 15282-15287 ◽  
Author(s):  
Beth Roskilly ◽  
Eric Keeling ◽  
Sharon Hood ◽  
Arnaud Giuggiola ◽  
Anna Sala

Consistent with a ubiquitous life history trade-off, trees exhibit a negative relationship between growth and longevity both among and within species. However, the mechanistic basis of this life history trade-off is not well understood. In addition to resource allocation conflicts among multiple traits, functional conflicts arising from individual morphological traits may also contribute to life history trade-offs. We hypothesized that conflicting functional effects of xylem structural traits contribute to the growth-longevity trade-off in trees. We tested this hypothesis by examining the extent to which xylem morphological traits (i.e., wood density, tracheid diameters, and pit structure) relate to growth rates and longevity in two natural populations of the conifer speciesPinus ponderosa. Hydraulic constraints arise as trees grow larger and xylem anatomical traits adjust to compensate. We disentangled the effects of size through ontogeny in individual trees and growth rates among trees on xylem traits by sampling each tree at multiple trunk diameters. We found that the oldest trees had slower lifetime growth rates compared with younger trees in the studied populations, indicating a growth-longevity trade-off. We further provide evidence that a single xylem trait, pit structure, with conflicting effects on xylem function (hydraulic safety and efficiency) relates to the growth-longevity trade-off in a conifer species. This study highlights that, in addition to trade-offs among multiple traits, functional constraints based on individual morphological traits like that of pit structure provide mechanistic insight into how and when life history trade-offs arise.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1560
Author(s):  
Lei Xu ◽  
Zongfei Wang ◽  
Hasan Ümitcan Yilmaz ◽  
Witold-Roger Poganietz ◽  
Hongtao Ren ◽  
...  

The transformation of the European electricity system could generate unintended environment-related trade-offs, e.g., between greenhouse gas emissions and metal depletion. The question thus emerges, how to shape policy packages considering climate change, but without neglecting other environmental and resource-related impacts. In this context, this study analyzes the impacts of different settings of potential policy targets using a multi-criteria analysis in the frame of a coupled energy system and life cycle assessment model. The focus is on the interrelationship between climate change and metal depletion in the future European decarbonized electricity system in 2050, also taking into account total system expenditures of transforming the energy system. The study shows, firstly, that highly ambitious climate policy targets will not allow for any specific resource policy targets. Secondly, smoothing the trade-off is only possible to the extent of one of the policy targets, whereas, thirdly, the potential of recycling as a techno-economic option is limited.


2021 ◽  
Vol 288 (1958) ◽  
pp. 20210765
Author(s):  
Jordanna M. Barley ◽  
Brian S. Cheng ◽  
Matthew Sasaki ◽  
Sarah Gignoux-Wolfsohn ◽  
Cynthia G. Hays ◽  
...  

Many species face extinction risks owing to climate change, and there is an urgent need to identify which species' populations will be most vulnerable. Plasticity in heat tolerance, which includes acclimation or hardening, occurs when prior exposure to a warmer temperature changes an organism's upper thermal limit. The capacity for thermal acclimation could provide protection against warming, but prior work has found few generalizable patterns to explain variation in this trait. Here, we report the results of, to our knowledge, the first meta-analysis to examine within-species variation in thermal plasticity, using results from 20 studies (19 species) that quantified thermal acclimation capacities across 78 populations. We used meta-regression to evaluate two leading hypotheses. The climate variability hypothesis predicts that populations from more thermally variable habitats will have greater plasticity, while the trade-off hypothesis predicts that populations with the lowest heat tolerance will have the greatest plasticity. Our analysis indicates strong support for the trade-off hypothesis because populations with greater thermal tolerance had reduced plasticity. These results advance our understanding of variation in populations' susceptibility to climate change and imply that populations with the highest thermal tolerance may have limited phenotypic plasticity to adjust to ongoing climate warming.


2017 ◽  
Author(s):  
Brent L. Lockwood ◽  
Tarun Gupta ◽  
Rosemary Scavotto

AbstractMany terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioral thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. Average maximum temperature of the warmest month of the year predicted embryonic thermal tolerance in tropical but not temperate sites. We further report that embryos live closer to their upper thermal limits than adultso—i.e., thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting dominance of heat-tolerant alleles. Together our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages in order to better predict adaptive limits.Impact SummaryClimate change may threaten the extinction of many ectothermic species, unless populations can evolutionarily adapt to rising temperatures. Natural selection should favor individuals with higher heat tolerances in hotter environments. But recent studies have found that individuals from hot and cold places often have similar heat tolerances. This pattern may indicate that the evolution of heat tolerance is constrained. If this were true, then it would have dire consequences for species persistence under novel thermal conditions.An alternative explanation for lack of variation in heat tolerance is that mobile organisms don’t need higher heat tolerances to survive in hotter places. The majority of studies have focused on heat tolerance of the adult life stage. Yet, adults in many species are mobile organisms that can avoid extreme heat by seeking shelter in cooler microhabitats (e.g., shaded locations). In contrast, immobile life stages (e.g., insect eggs) cannot behaviorally avoid extreme heat. Thus, mobile and immobile life stages may face different thermal selection pressures that lead to disparate patterns of thermal adaptation across life stages.Here, we compared heat tolerances of fruit fly adults and eggs (Drosophila melanogaster) from populations in temperate North America and tropical locations around the globe. Consistent with previous studies, we found no differences among populations in adult heat tolerance. However, eggs from tropical flies were consistently more heat tolerant than eggs from North American flies. Further, eggs had lower heat tolerance than adults. Consequently, fly eggs in the hotter tropics may experience heat death more frequently than adult flies later in life. This may explain why patterns of divergence in heat tolerance were decoupled across life stages. These patterns indicate that thermal adaptation may be life-stage-specific and suggest that future work should characterize thermal traits across life stages to better understand the evolution of thermal limits.


2017 ◽  
Author(s):  
Meike T. Wortel ◽  
Elad Noor ◽  
Michael Ferris ◽  
Frank J. Bruggeman ◽  
Wolfram Liebermeister

AbstractMicrobes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism inE. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.Author SummaryWhen cells compete for nutrients, those that grow faster and produce more offspring per time are favored by natural selection. In contrast, when cells need to maximize the cell number at a limited nutrient supply, fast growth does not matter and an efficient use of nutrients (i.e. high biomass yield) is essential. This raises a basic question about metabolism: can cells achieve high growth rates and yields simultaneously, or is there a conflict between the two goals? Using a new modeling method called Enzymatic Flux Cost Minimization (EFCM), we predict cellular growth rates and find that growth rate/yield trade-offs and the ensuing preference for enzyme-efficient or substrate-efficient metabolic pathways are not universal, but depend on growth conditions such as external glucose and oxygen concentrations.


2016 ◽  
Author(s):  
Shraddha Madhav Karve ◽  
Devika Bhave ◽  
Dhanashri Nevgi ◽  
Sutirth Dey

In nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. While both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations of Escherichia coli under complex (i.e. stressful combinations of pH, H2O2 and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade-off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2O2 and NaCl) for the same duration. The fluctuation-selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, while the populations selected under constant stresses experienced trade-offs in the environments other than those in which they were selected, the fluctuation-selected populations could by-pass the across-environment trade-offs almost entirely. Interestingly, trade-offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade-off structure in evolving populations.


The Condor ◽  
2006 ◽  
Vol 108 (3) ◽  
pp. 601-611 ◽  
Author(s):  
Daniel R. Ardia

AbstractNestlings can exhibit considerable variation in developmental patterns both within and among locations due to differences in environmental conditions and parental investment. I investigated trade-offs between nestling growth rate and residual body mass (body condition) at three locations across the range of the Tree Swallow (Tachycineta bicolor). Nestlings at the northern extreme of the range in Alaska had slower growth rates, lower body mass, and higher residual body mass than nestlings in New York and Tennessee. High insect availability was correlated with increased growth rates of nestlings in New York and Tennessee, but not in Alaska. Conversely, nestlings in Alaska showed increased residual body mass with high insect availability, but nestlings in New York and Tennessee did not. The trade-off between growth rate and residual body mass varied among sites, with fast-growing nestlings in Tennessee maintaining a higher residual body mass than those in Alaska. These results suggest that factors affecting offspring growth and condition vary among sites, leading to geographical differences in offspring development trajectories.


Sign in / Sign up

Export Citation Format

Share Document