Context-aware POI Recommendation using Neutrosophic Set for Mobile Edge Computing
Abstract With the rapid development of mobile communication technology, there is a growing demand for high-quality point of interest(POI) recommendation. The POIs visited by users only account for a very small proportion. Thus traditional POI recommendation method is vulnerable to data sparsity and lacks a clear and effective explanation for POI ranking result. The POI selection made by the user is influenced by various contextual attributes. The challenge lies in representing accurately and aggregating multiple contextual information efficiently. We transform the POI recommendation into a contextual multi-attribute decision problem based on the neutrosophic set (NS) which is suitable for representing fuzzy decision information. We establish a unified framework of contextual information. Firstly, we propose a contextual multi-attribute NS transformation model of POI, including the NS model for single-dimensional attributes and the NS model for multi-dimensional attributes. And then through the aggregation of multi attribute NS, the POI that best conforms to user's preferences is recommended. Finally, the experimental results based on the Yelp dataset show that the proposed strategy performs better than the typical POI recommendation method in NDCG, accuracy, and recall rate.