scholarly journals The DUBs Family in Populus: Identification, Characterization, Evolution and Expression Patterns

Author(s):  
Wenqing Zheng ◽  
Liang Du

Abstract Background: The deubiquitinases (DUB) family are a class of enzymes that regulate the stability or reverse the ubiquitination modification of many proteins in the cell, participating in cell cycle regulation, cell division and differentiation, various physiological activities such as DNA damage repair, growth and development, and response to stress. However, little is known about these genes in the woody plants. Results: In the present study, 88 DUB genes were identified in woody model plant Populus trichocarpa, including 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM with similar domains. According to the phylogenetic analysis, the 44 PtrUBP genes were classified into 14 subfamily, three PtrUCHs were classified into two groups, 23 PtrOTUs had six groups, four PtrMJDs had two groups, and 14 PtrJAMMs had six groups. The structure and motif analysis indicated that the same subfamily had similar genome structure and motif distribution characteristics. Ks/Ka analysis showed that the segmental duplication events played a major role in the expansion of Populus DUB genes. Synteny analysis of Populus DUB genes and four other species provided deep perception into the evolutionary traits of DUB genes. Expression profiles derived from transcriptome data exhibited distinct expression patterns of DUB genes in various tissues. Based on the result of promoter cis-regulatory elements analysis, we selected 16 representative PtrUBP genes to test their response to different hormonal treatments. The results showed that most of PtrUBPs were upregulated in the ABA, SA, and MeJA treatments, implying that their potential roles in abiotic stress response in Populus. Conclusion: The results in this study broaden our understanding of the DUB gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the DUBs provide a solid foundation for exploring their specific functions in Populus as well as indicate potential role of PtrUBP gene in abiotic stress.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenqing Zheng ◽  
Liang Du

Abstract Background The deubiquitinase (DUB) family constitutes a group of proteases that regulate the stability or reverse the ubiquitination of many proteins in the cell. These enzymes participate in cell-cycle regulation, cell division and differentiation, diverse physiological activities such as DNA damage repair, growth and development, and response to stress. However, limited information is available on this family of genes in woody plants. Results In the present study, 88 DUB family genes were identified in the woody model plant Populus trichocarpa, comprising 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM genes with similar domains. According to phylogenetic analysis, the PtrUBP genes were classified into 16 groups, the PtrUCH genes into two, the PtrOTU genes into eight, the PtrMJD genes into two, and the PtrJAMM genes into seven. Members of same subfamily had similar gene structure and motif distribution characteristics. Synteny analysis of the DUB family genes from P. thrchocarpa and four other plant species provided insight into the evolutionary traits of DUB genes. Expression profiles derived from previously published transcriptome data revealed distinct expression patterns of DUB genes in various tissues. On the basis of the results of analysis of promoter cis-regulatory elements, we selected 16 representative PtrUBP genes to treatment with abscisic acid, methyl jasmonate, or salicylic acid applied as a foliar spray. The majority of PtrUBP genes were upregulated in response to the phytohormone treatments, which implied that the genes play potential roles in abiotic stress response in Populus. Conclusions The results of this study broaden our understanding of the DUB family in plants. Analysis of the gene structure, conserved elements, and expression patterns of the DUB family provides a solid foundation for exploration of their specific functions in Populus and to elucidate the potential role of PtrUBP gene in abiotic stress response.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruifeng Cui ◽  
Xiaoge Wang ◽  
Waqar Afzal Malik ◽  
Xuke Lu ◽  
Xiugui Chen ◽  
...  

Abstract Background The Raffinose synthetase (RAFS) genes superfamily is critical for the synthesis of raffinose, which accumulates in plant leaves under abiotic stress. However, it remains unclear whether RAFS contributes to resistance to abiotic stress in plants, specifically in the Gossypium species. Results In this study, we identified 74 RAFS genes from G. hirsutum, G. barbadense, G. arboreum and G. raimondii by using a series of bioinformatic methods. Phylogenetic analysis showed that the RAFS gene family in the four Gossypium species could be divided into four major clades; the relatively uniform distribution of the gene number in each species ranged from 12 to 25 based on species ploidy, most likely resulting from an ancient whole-genome polyploidization. Gene motif analysis showed that the RAFS gene structure was relatively conservative. Promoter analysis for cis-regulatory elements showed that some RAFS genes might be regulated by gibberellins and abscisic acid, which might influence their expression levels. Moreover, we further examined the functions of RAFS under cold, heat, salt and drought stress conditions, based on the expression profile and co-expression network of RAFS genes in Gossypium species. Transcriptome analysis suggested that RAFS genes in clade III are highly expressed in organs such as seed, root, cotyledon, ovule and fiber, and under abiotic stress in particular, indicating the involvement of genes belonging to clade III in resistance to abiotic stress. Gene co-expressed network analysis showed that GhRFS2A-GhRFS6A, GhRFS6D, GhRFS7D and GhRFS8A-GhRFS11A were key genes, with high expression levels under salt, drought, cold and heat stress. Conclusion The findings may provide insights into the evolutionary relationships and expression patterns of RAFS genes in Gossypium species and a theoretical basis for the identification of stress resistance materials in cotton.


2020 ◽  
Author(s):  
Shuxun Yu ◽  
Pengyun Chen ◽  
Fei wei ◽  
Shuaishuai Cheng ◽  
Liang Ma ◽  
...  

Abstract Background Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. Results In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into ten clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that the VQ genes play important roles in response to salt and drought stress, especially GhVQ18 and GhVQ84 were significantly high expression in PEG stress and salt stress. Further analysis showed that GhVQ genes were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. Conclusions The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQ genes provide a solid foundation for exploring their specific functions in the abiotic stress responses in cotton. Our study provides significant insight into the potential functions of VQ genes in cotton.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Ma ◽  
Jia-xi Dai ◽  
Xiao-wei Liu ◽  
Duo Lin

Abstract Background BBX transcription factors are a kind of zinc finger transcription factors with one or two B-box domains, which partilant in plant growth, development and response to abiotic or biotic stress. The BBX family has been identified in Arabidopsis, rice, tomato and some other model plant genomes. Results Here, 24 CaBBX genes were identified in pepper (Capsicum annuum L.), and the phylogenic analysis, structures, chromosomal location, gene expression patterns and subcellular localizations were also carried out to understand the evolution and function of CaBBX genes. All these CaBBXs were divided into five classes, and 20 of them distributed in 11 of 12 pepper chromosomes unevenly. Most duplication events occurred in subgroup I. Quantitative RT-PCR indicated that several CaBBX genes were induced by abiotic stress and hormones, some had tissue-specific expression profiles or differentially expressed at developmental stages. Most of CaBBX members were predicated to be nucleus-localized in consistent with the transient expression assay by onion inner epidermis of the three tested CaBBX members (CaBBX5, 6 and 20). Conclusion Several CaBBX genes were induced by abiotic stress and exogenous phytohormones, some expressed tissue-specific and variously at different developmental stage. The detected CaBBXs act as nucleus-localized transcription factors. Our data might be a foundation in the identification of CaBBX genes, and a further understanding of their biological function in future studies.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1949
Author(s):  
Tian Fan ◽  
Tianxiao Lv ◽  
Chuping Xie ◽  
Yuping Zhou ◽  
Changen Tian

Members of the IQM (IQ-Motif Containing) gene family are involved in plant growth and developmental processes, biotic and abiotic stress response. To systematically analyze the IQM gene family and their expression profiles under diverse biotic and abiotic stresses, we identified 8 IQM genes in the rice genome. In the current study, the whole genome identification and characterization of OsIQMs, including the gene and protein structure, genome localization, phylogenetic relationship, gene expression and yeast two-hybrid were performed. Eight IQM genes were classified into three subfamilies (I–III) according to the phylogenetic analysis. Gene structure and protein motif analyses showed that these IQM genes are relatively conserved within each subfamily of rice. The 8 OsIQM genes are distributed on seven out of the twelve chromosomes, with three IQM gene pairs involved in segmental duplication events. The evolutionary patterns analysis revealed that the IQM genes underwent a large-scale event within the last 20 to 9 million years. In addition, quantitative real-time PCR analysis of eight OsIQMs genes displayed different expression patterns at different developmental stages and in different tissues as well as showed that most IQM genes were responsive to PEG, NaCl, jasmonic acid (JA), abscisic acid (ABA) treatment, suggesting their crucial roles in biotic, and abiotic stress response. Additionally, a yeast two-hybrid assay showed that OsIQMs can interact with OsCaMs, and the IQ motif of OsIQMs is required for OsIQMs to combine with OsCaMs. Our results will be valuable to further characterize the important biological functions of rice IQM genes.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pengyun Chen ◽  
Fei wei ◽  
Shuaishuai Cheng ◽  
Liang Ma ◽  
Hantao Wang ◽  
...  

Abstract Background Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. Results In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into 10 clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. Conclusions The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12484
Author(s):  
Zilin Zhao ◽  
Jiaran Shuang ◽  
Zhaoguo Li ◽  
Huimin Xiao ◽  
Yuling Liu ◽  
...  

Background Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response. Methods In this study, the potential function of GLK family genes in Gossypium hirsutum was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction. Gene expression of nine key genes were analyzed by qRT-PCR experiments. Results Herein, we identified a total of 146 GhGLK genes in Gossypium hirsutum, which were unevenly distributed on each of the chromosomes. There were significant differences in the number and location of genes between the At sub-genome and the Dt sub-genome. According to the phylogenetic analysis, they were divided into ten subgroups, each of which had very similar number and structure of exons and introns. Some cis-regulatory elements were identified through promoter analysis, including five types of elements related to abiotic stress response, five types of elements related to phytohormone and five types of elements involved in growth and development. Based on public transcriptome data analysis, we identified nine key GhGLKs involved in salt, cold, and drought stress. The qRT-PCR results showed that these genes had different expression patterns under these stress conditions, suggesting that GhGLK genes played an important role in abiotic stress response. This study laid a theoretical foundation for the screening and functional verification of genes related to stress resistance of GLK gene family in cotton.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2284
Author(s):  
Jing Hou ◽  
Yan Sun ◽  
Lei Wang ◽  
Yuanzhong Jiang ◽  
Ningning Chen ◽  
...  

Homeobox (HB) genes play critical roles in the regulation of plant morphogenesis, growth and development. Here, we identified a total of 156 PtrHB genes from the Populus trichocarpa genome. According to the topologies and taxonomy of the phylogenetic tree constructed by Arabidopsis thaliana HB members, all PtrHB proteins were divided into six subgroups, namely HD-ZIP, ZF-HD, HB-PHD, TALE, WOX and HB-OTHERS. Multiple alignments of conserved homeodomains (HDs) revealed the conserved loci of each subgroup, while gene structure analysis showed similar exon–intron gene structures, and motif analysis indicated the similarity of motif number and pattern in the same subgroup. Promoter analysis indicated that the promoters of PtrHB genes contain a series of cis-acting regulatory elements involved in responding to various abiotic stresses, indicating that PtrHBs had potential functions in these processes. Collinearity analysis revealed that there are 96 pairs of 127 PtrHB genes mainly distributing on Chromosomes 1, 2, and 5. We analyzed the spatio-temporal expression patterns of PtrHB genes, and the virus-induced gene silencing (VIGS) of PtrHB3 gene resulted in the compromised tolerance of poplar seedlings to mannitol treatment. The bioinformatics on PtrHB family and preliminary exploration of drought-responsive genes can provide support for further study of the family in woody plants, especially in drought-related biological processes. It also provides a direction for developing new varieties of poplar with drought resistance. Overall, our results provided significant information for further functional analysis of PtrHB genes in poplar and demonstrated that PtrHB3 is a dominant gene regulating tolerance to water stress treatment in poplar seedlings.


2020 ◽  
Author(s):  
Pengyun Chen ◽  
Fei wei ◽  
Shuaishuai Cheng ◽  
Liang Ma ◽  
Hantao Wang ◽  
...  

Abstract Background: Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton.Results: In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into ten clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements.Conclusions: The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton.


2019 ◽  
Vol 20 (13) ◽  
pp. 3235 ◽  
Author(s):  
Yanguo Ke ◽  
Farhat Abbas ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Yuechong Yue ◽  
...  

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.


Sign in / Sign up

Export Citation Format

Share Document