abiotic stress response
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 188)

H-INDEX

32
(FIVE YEARS 7)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Qingyu Huang ◽  
Wenmin Qiu ◽  
Miao Yu ◽  
Shaocui Li ◽  
Zhuchou Lu ◽  
...  

Heavy-metal ATPase (HMA), an ancient family of transition metal pumps, plays important roles in the transmembrane transport of transition metals such as Cu, Zn, Cd, and Co. Although characterization of HMAs has been conducted in several plants, scarcely knowledge was revealed in Sedum plumbizincicola, a type of cadmium (Cd) hyperaccumulator found in Zhejiang, China. In this study, we first carried out research on genome-wide analysis of the HMA gene family in S. plumbizincicola and finally identified 8 SpHMA genes and divided them into two subfamilies according to sequence alignment and phylogenetic analysis. In addition, a structural analysis showed that SpHMAs were relatively conserved during evolution. All of the SpHMAs contained the HMA domain and the highly conserved motifs, such as DKTGT, GDGxNDxP, PxxK S/TGE, HP, and CPx/SPC. A promoter analysis showed that the majority of the SpHMA genes had cis-acting elements related to the abiotic stress response. The expression profiles showed that most SpHMAs exhibited tissue expression specificity and their expression can be regulated by different heavy metal stress. The members of Zn/Co/Cd/Pb subgroup (SpHMA1-3) were verified to be upregulated in various tissues when exposed to CdCl2. Here we also found that the expression of SpHMA7, which belonged to the Cu/Ag subgroup, had an upregulated trend in Cd stress. Overexpression of SpHMA7 in transgenic yeast indicated an improved sensitivity to Cd. These results provide insights into the evolutionary processes and potential functions of the HMA gene family in S. plumbizincicola, laying a theoretical basis for further studies on figuring out their roles in regulating plant responses to biotic/abiotic stresses.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhijun Zhang ◽  
Bin Huang ◽  
Jialu Chen ◽  
Yang Jiao ◽  
Hui Guo ◽  
...  

Jacalin-related lectins (JRLs) are a new subfamily of plant lectins that has recently been recognized and plays an important role in plant growth, development, and abiotic stress response. Although moso bamboo (Phyllostachys edulis) is an economically and industrially important bamboo worldwide, there has been no systematic identification of JRLs in this species. Here, we identified 25 JRL genes in moso bamboo, and these genes are unequally distributed among 10 genome scaffolds. Phylogenetic analysis showed that the moso bamboo JRLs were clustered into four JRL subgroups: I, II, V, and VII. Numerous stress-responsive and hormone-regulated cis-elements were detected in the upstream promoter regions of the JRLs. Genome collinearity analyses showed that the JRL genes of moso bamboo are more closely related to those of Brachypodium distachyon than to those of Oryza sativa and Zea mays. Sixty-four percent of the PeJRL genes are present as segmental and tandem duplicates. qRT-PCR expression analysis showed that JRL genes in the same subgroup were significantly downregulated in response to salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA) treatments and significantly upregulated under low temperature, drought, and salt stress; they also exhibited tissue-specific expression patterns. Subcellular localization experiments revealed that PeJRL04 and PeJRL13 were localized to the cell membrane, nucleus, and cytoplasm. Three dimensional structure prediction and yeast two-hybrid assays were used to verify that PeJRL13 exists as a self-interacting homodimer in vivo. These findings provide an important reference for understanding the functions of specific moso bamboo JRL genes and for the effective selection of stress-related genes.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12718
Author(s):  
RongXiu Liu ◽  
Naresh Vasupalli ◽  
Dan Hou ◽  
Antony Stalin ◽  
Hantian Wei ◽  
...  

With-no-lysine (WNK) kinases play vital roles in abiotic stress response, circadian rhythms, and regulation of flowering time in rice, Arabidopsis, and Glycine max. However, there are no previous reports of WNKs in the Bambusoideae, although genome sequences are available for diploid, tetraploid, and hexaploid bamboo species. In the present study, we identified 41 WNK genes in five bamboo species and analysed gene evolution, phylogenetic relationship, physical and chemical properties, cis-elements, and conserved motifs. We predicted the structure of PeWNK proteins of moso bamboo and determined the exposed, buried, structural and functional amino acids. Real-time qPCR analysis revealed that PeWNK5, PeWNK7, PeWNK8, and PeWNK11 genes are involved in circadian rhythms. Analysis of gene expression of different organs at different developmental stages revealed that PeWNK genes are tissue-specific. Analysis of various abiotic stress transcriptome data (drought, salt, SA, and ABA) revealed significant gene expression levels in all PeWNKs except PeWNK11. In particular, PeWNK8 and PeWNK9 were significantly down- and up-regulated, respectively, after abiotic stress treatment. A co-expression network of PeWNK genes also showed that PeWNK2, PeWNK4, PeWNK7, and PeWNK8 were co-expressed with transcriptional regulators related to abiotic stress. In conclusion, our study identified the PeWNKs of moso bamboo involved in circadian rhythms and abiotic stress response. In addition, this study serves as a guide for future functional genomic studies of the WNK genes of the Bambusoideae.


2021 ◽  
Author(s):  
Jerome P. Panibe ◽  
Long Wang ◽  
Yi-Chen Lee ◽  
Chang-Sheng Wang ◽  
Wen-Hsiung Li

Background: Taichung Native 1 (TN1) is the first semidwarf rice cultivar that initiated the Green Revolution. As TN1 is a direct descendant of the Dee-geo-woo-gen cultivar, the source of the sd1 semidwarf gene, the sd1 gene can be defined through TN1. Also, TN1 is susceptible to the blast disease and is described as being drought-tolerant. However, genes related to these characteristics of TN1 are unknown. Our aim was to identify and characterize TN1 genes related to these traits. Results: Aligning the sd1 of TN1 to Nipponbare sd1, we found a 382-bp deletion including a frameshift mutation. Sanger sequencing validated this deleted region in sd1, and we proposed a model of the sd1 gene that corrects errors in the literature. We also predicted the blast disease resistant (R) genes of TN1. Orthologues of the R genes in Tetep, a well-known resistant cultivar that is commonly used as a donor for breeding new blast resistant cultivars, were then sought in TN1, and if they were present, we looked for mutations. The absence of Pi54, a well-known R gene, in TN1 partially explains why TN1 is more susceptible to blast than Tetep. We also scanned the TN1 genome using the PosiGene software and identified 11 genes deemed to have undergone positive selection. Some of them are associated with drought-resistance and stress response. Conclusions: We have redefined the deletion of the sd1 gene in TN1, a direct descendant of the Dee-geo-woo-gen cultivar, and have corrected some literature errors. Moreover, we have identified blast resistant genes and positively selected genes, including genes that characterize TN1's blast susceptibility and abiotic stress response. These new findings increase the potential of using TN1 to breed new rice cultivars.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming Ma ◽  
Qiming Chen ◽  
Huizhen Dong ◽  
Shaoling Zhang ◽  
Xiaosan Huang

Abstract Background Transcription factors (TFs) are involved in many important biological processes, including cell stretching, histological differentiation, metabolic activity, seed storage, gene regulation, and response to abiotic and biotic stresses. Little is known about the functions, evolutionary history, and expression patterns of basic region-leucine zipper TF family genes in pear, despite the release of the genome of Chinese white pears (“Dangshansuli”). Results Overall, 92 bZIP genes were identified in the pear genome (Pyrus breschneideri). Of these, 83 were randomly distributed on all 17 chromosomes except chromosome 4, and the other 9 genes were located on loose scaffolding. The genes were divided into 14 subgroups. Whole-genome duplications, dispersed duplication, and purifying selection for whole-genome duplications are the main reasons for the expansion of the PbrbZIP gene family. The analysis of functional annotation enrichment indicated that most of the functions of PbrbZIP genes were enriched in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways involved in the abiotic stress response. Next, expression analysis and virus-induced gene silencing results indicated that PbrbZIP genes might play critical roles in response to drought and cold stresses, especially for the genes from subgroups A, C, G, I, and S. Conclusions Ninety-two PbrbZIP genes were identified from the pear genome and classified into 14 subgroups. PbrbZIP genes were mainly expanded from whole-genome duplications and dispersed duplications and retained by purifying selection. PbrbZIP genes were induced by cold and drought stresses and played important roles in drought and cold tolerance. These results provided useful information for further increasing the tolerance of pears to stresses and a foundation to study the cold and drought tolerance mechanism of PbrbZIP genes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhen Li ◽  
Xinyue Wang ◽  
Kebin Yang ◽  
Chenglei Zhu ◽  
Tingting Yuan ◽  
...  

Abstract Background Xylan is one of the most abundant hemicelluloses and can crosslink cellulose and lignin to increase the stability of cell walls. A number of genes encoding glycosyltransferases play vital roles in xylan biosynthesis in plants, such as those of the GT43 family. However, little is known about glycosyltransferases in bamboo, especially woody bamboo which is a good substitute for timber. Results A total of 17 GT43 genes (PeGT43–1 ~ PeGT43–17) were identified in the genome of moso bamboo (Phyllostachys edulis), which belong to three subfamilies with specific motifs. The phylogenetic and collinearity analyses showed that PeGT43s may have undergone gene duplication, as a result of collinearity found in 12 pairs of PeGT43s, and between 17 PeGT43s and 10 OsGT43s. A set of cis-acting elements such as hormones, abiotic stress response and MYB binding elements were found in the promoter of PeGT43s. PeGT43s were expressed differently in 26 tissues, among which the highest expression level was found in the shoots, especially in the rapid elongation zone and nodes. The genes coexpressed with PeGT43s were annotated as associated with polysaccharide metabolism and cell wall biosynthesis. qRT–PCR results showed that the coexpressed genes had similar expression patterns with a significant increase in 4.0 m shoots and a peak in 6.0 m shoots during fast growth. In addition, the xylan content and structural polysaccharide staining intensity in bamboo shoots showed a strong positive correlation with the expression of PeGT43s. Yeast one-hybrid assays demonstrated that PeMYB35 could recognize the 5′ UTR/promoter of PeGT43–5 by binding to the SMRE cis-elements. Conclusions PeGT43s were found to be adapted to the requirement of xylan biosynthesis during rapid cell elongation and cell wall accumulation, as evidenced by the expression profile of PeGT43s and the rate of xylan accumulation in bamboo shoots. Yeast one-hybrid analysis suggested that PeMYB35 might be involved in xylan biosynthesis by regulating the expression of PeGT43–5 by binding to its 5′ UTR/promoter. Our study provides a comprehensive understanding of PeGT43s in moso bamboo and lays a foundation for further functional analysis of PeGT43s for xylan biosynthesis during rapid growth.


2021 ◽  
Vol 22 (23) ◽  
pp. 12917
Author(s):  
Naresh Vasupalli ◽  
Dan Hou ◽  
Rahul Mohan Singh ◽  
Hantian Wei ◽  
Long-Hai Zou ◽  
...  

Lignin biosynthesis enzymes form complexes for metabolic channelling during lignification and these enzymes also play an essential role in biotic and abiotic stress response. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme that catalyses the reduction of aldehydes to alcohols, which is the final step in the lignin biosynthesis pathway. In the present study, we identified 49 CAD enzymes in five Bambusoideae species and analysed their phylogenetic relationships and conserved domains. Expression analysis of Moso bamboo PheCAD genes in several developmental tissues and stages revealed that among the PheCAD genes, PheCAD2 has the highest expression level and is expressed in many tissues and PheCAD1, PheCAD6, PheCAD8 and PheCAD12 were also expressed in most of the tissues studied. Co-expression analysis identified that the PheCAD2 positively correlates with most lignin biosynthesis enzymes, indicating that PheCAD2 might be the key enzyme involved in lignin biosynthesis. Further, more than 35% of the co-expressed genes with PheCADs were involved in biotic or abiotic stress responses. Abiotic stress transcriptomic data (SA, ABA, drought, and salt) analysis identified that PheCAD2, PheCAD3 and PheCAD5 genes were highly upregulated, confirming their involvement in abiotic stress response. Through yeast two-hybrid analysis, we found that PheCAD1, PheCAD2 and PheCAD8 form homo-dimers. Interestingly, BiFC and pull-down experiments identified that these enzymes form both homo- and hetero- dimers. These data suggest that PheCAD genes are involved in abiotic stress response and PheCAD2 might be a key lignin biosynthesis pathway enzyme. Moreover, this is the first report to show that three PheCAD enzymes form complexes and that the formation of PheCAD homo- and hetero- dimers might be tissue specific.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingkang Yang ◽  
Liping Wang ◽  
Chumin Chen ◽  
Xu Guo ◽  
Chuanglie Lin ◽  
...  

AbstractAutophagy is a highly conserved process of degradation of cytoplasmic constituents in eukaryotes. It is involved in the growth and development of plants, as well as in biotic and abiotic stress response. Although autophagy-related (ATG) genes have been identified and characterized in many plant species, little is known about this process in Medicago truncatula. In this study, 39 ATGs were identified, and their gene structures and conserved domains were systematically characterized in M. truncatula. Many cis-elements, related to hormone and stress responsiveness, were identified in the promoters of MtATGs. Phylogenetic and interaction network analyses suggested that the function of MtATGs is evolutionarily conserved in Arabidopsis and M. truncatula. The expression of MtATGs, at varied levels, was detected in all examined tissues. In addition, most of the MtATGs were highly induced during seed development and drought stress, which indicates that autophagy plays an important role in seed development and responses to drought stress in M. truncatula. In conclusion, this study gives a comprehensive overview of MtATGs and provides important clues for further functional analysis of autophagy in M. truncatula.


2021 ◽  
pp. 303-324
Author(s):  
Debasish Pattnaik ◽  
Deepali Dash ◽  
Ankita Mishra ◽  
Aditya Kiran Padhiary ◽  
Prajjal Dey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document