scholarly journals Vision-based Pakistani Sign Language Recognition Using Bag-of-Words and Support Vector Machines

Author(s):  
Muhammad Shaheer Mirza ◽  
Sheikh Muhammad Munaf ◽  
Shahid Ali ◽  
Fahad Azim ◽  
Saad Jawaid Khan

Abstract In order to perform their daily activities, a person is required to communicating with others. This can be a major obstacle for the deaf population of the world, who communicate using sign languages (SL). Pakistani Sign Language (PSL) is used by more than 250,000 deaf Pakistanis. Developing a SL recognition system would greatly facilitate these people. This study aimed to collect data of static and dynamic PSL alphabets and to develop a vision-based system for their recognition using Bag-of-Words (BoW) and Support Vector Machine (SVM) techniques. A total of 5,120 images for 36 static PSL alphabet signs and 353 videos with 45,224 frames for 3 dynamic PSL alphabet signs were collected from 10 native signers of PSL. The developed system used the collected data as input, resized the data to various scales and converted the RGB images into grayscale. The resized grayscale images were segmented using Thresholding technique and features were extracted using Speeded Up Robust Feature (SURF). The obtained SURF descriptors were clustered using K-means clustering. A BoW was obtained by computing the Euclidean distance between the SURF descriptors and the clustered data. The codebooks were divided into training and testing using 5-fold cross validation. The highest overall classification accuracy for static PSL signs was 97.80% at 750×750 image dimensions and 500 Bags. For dynamic PSL signs a 96.53% accuracy was obtained at 480×270 video resolution and 200 Bags.

Sign language is the only method of communication for the hearing and speech impaired people around the world. Most of the speech and hearing-impaired people understand single sign language. Thus, there is an increasing demand for sign language interpreters. For regular people learning sign language is difficult, and for speech and hearing-impaired person, learning spoken language is impossible. There is a lot of research being done in the domain of automatic sign language recognition. Different methods such as, computer vision, data glove, depth sensors can be used to train a computer to interpret sign language. The interpretation is being done from sign to text, text to sign, speech to sign and sign to speech. Different countries use different sign languages, the signers of different sign languages are unable to communicate with each other. Analyzing the characteristic features of gestures provides insights about the sign language, some common features in sign languages gestures will help in designing a sign language recognition system. This type of system will help in reducing the communication gap between sign language users and spoken language users.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3554 ◽  
Author(s):  
Teak-Wei Chong ◽  
Boon-Giin Lee

Sign language is intentionally designed to allow deaf and dumb communities to convey messages and to connect with society. Unfortunately, learning and practicing sign language is not common among society; hence, this study developed a sign language recognition prototype using the Leap Motion Controller (LMC). Many existing studies have proposed methods for incomplete sign language recognition, whereas this study aimed for full American Sign Language (ASL) recognition, which consists of 26 letters and 10 digits. Most of the ASL letters are static (no movement), but certain ASL letters are dynamic (they require certain movements). Thus, this study also aimed to extract features from finger and hand motions to differentiate between the static and dynamic gestures. The experimental results revealed that the sign language recognition rates for the 26 letters using a support vector machine (SVM) and a deep neural network (DNN) are 80.30% and 93.81%, respectively. Meanwhile, the recognition rates for a combination of 26 letters and 10 digits are slightly lower, approximately 72.79% for the SVM and 88.79% for the DNN. As a result, the sign language recognition system has great potential for reducing the gap between deaf and dumb communities and others. The proposed prototype could also serve as an interpreter for the deaf and dumb in everyday life in service sectors, such as at the bank or post office.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1739
Author(s):  
Hamzah Luqman ◽  
El-Sayed M. El-Alfy

Sign languages are the main visual communication medium between hard-hearing people and their societies. Similar to spoken languages, they are not universal and vary from region to region, but they are relatively under-resourced. Arabic sign language (ArSL) is one of these languages that has attracted increasing attention in the research community. However, most of the existing and available works on sign language recognition systems focus on manual gestures, ignoring other non-manual information needed for other language signals such as facial expressions. One of the main challenges of not considering these modalities is the lack of suitable datasets. In this paper, we propose a new multi-modality ArSL dataset that integrates various types of modalities. It consists of 6748 video samples of fifty signs performed by four signers and collected using Kinect V2 sensors. This dataset will be freely available for researchers to develop and benchmark their techniques for further advancement of the field. In addition, we evaluated the fusion of spatial and temporal features of different modalities, manual and non-manual, for sign language recognition using the state-of-the-art deep learning techniques. This fusion boosted the accuracy of the recognition system at the signer-independent mode by 3.6% compared with manual gestures.


Author(s):  
Ajabe Harshada

Communication is the medium by which we can share our thoughts or convey the messages with other person. Nowadays we can give commands using voice recognition. But what if one absolutely cannot hear anything and eventually cannot speak. So the Sign Language is the main communicating tool for hearing impaired and mute people, and also to ensure an independent life for them, the automatic interpretation of sign language is an extensive research area. Sign language recognition (SLR) aims to interpret sign languages automatically by an application in order to help the deaf people to communicate with hearing society conveniently. Our aim is to design a system to help the Deaf and Dumb person to communicate with the rest of the world using sign language. With the use of image processing and artificial intelligence, many techniques and algorithms have been developed in this area. Every sign language recognition system is trained for recognizing the signs and converting them into required pattern. The proposed system aim to provide speech to speechless, in this paper we have introduced Sign Language Recognition using CNN for dynamic gestures to achieve faster results with high accuracy.


The aim is to present a real time system for hand gesture recognition on the basis of detection of some meaningful shape based feature like orientation, center of mass, status of fingers in term of raised or folded fingers of hand and their respective location in image. Hand gesture Recognition System has various real time applications in natural, innovative, user friendly way of how to interact with the computer which has more facilities that are familiar to us. Gesture recognition has a wide area of application including Human machine interaction, sign language, game technology robotics etc are some of the areas where Gesture recognition can be applied. More specifically hand gesture is used as a signal or input means given to the computer especially by disabled person. Being an interesting part of the human and computer interaction hand gesture recognition is needed for real life application, but complex of structures presents in human hand has a lot of challenges for being tracked and extracted. Making use of computer vision algorithms and gesture recognition techniques will result in developing low-cost interface devices using hand gestures for interacting with objects in virtual environment. SVM (support vector machine) and efficient feature extraction technique is presented for hand gesture recognition. This method deals with the dynamic aspects of hand gesture recognition system.


2018 ◽  
Author(s):  
Rúbia Reis Guerra ◽  
Tamires Martins Rezende ◽  
Frederico Gadelha Guimarães ◽  
Sílvia Grasiella Moreira Almeida

Sign language is one of the main forms of communication used by the deaf community. The language’s smallest unit, a “sign”, comprises a series of intricate manual and facial gestures. As opposed to speech recognition, sign language recognition (SLR) lags behind, presenting a multitude of open challenges because this language is visual-motor. This paper aims to explore two novel approaches in feature extraction of facial expressions in SLR, and to propose the use of Random Forest (RF) in Brazilian SLR as a scalable alternative to Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN). Results show that RF’s performance is at least comparable to SVM’s and k-NN’s, and validate non-manual parameter recognition as a consistent step towards SLR.


Author(s):  
Aleksejs Zorins ◽  
Peter Grabusts

There is a lack of automated sign language recognition system in Latvia while many other countries have been already equipped with such a system. Latvian deaf society requires support of such a system which would allow people with special needs to enhance their communication in governmental and public places. The aim of this paper is to recognize Latvian sign language alphabet using classification approach with artificial neural networks, which is a first step in developing integral system of Latvian Sign Language recognition. Communication in our daily life is generally vocal, but body language has its own significance. It has many areas of application like sign languages are used for various purposes and in case of people who are deaf and dumb, sign language plays an important role. Gestures are the very first form of communication. The paper presents Sign Language Recognition possibilities with centre of gravity method. So this area influenced us very much to carry on the further work related to hand gesture classification and sign’s clustering.


2019 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
MALHOTRA POOJA ◽  
K. MANIAR CHIRAG ◽  
V. SANKPAL NIKHIL ◽  
R. THAKKAR HARDIK ◽  
◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Vasu Mehra ◽  
Dhiraj Pandey ◽  
Aayush Rastogi ◽  
Aditya Singh ◽  
Harsh Preet Singh

Background:: People suffering from hearing and speaking disabilities have a few ways of communicating with other people. One of these is to communicate through the use of sign language. Objective:: Developing a system for sign language recognition becomes essential for deaf as well as a mute person. The recognition system acts as a translator between a disabled and an able person. This eliminates the hindrances in exchange of ideas. Most of the existing systems are very poorly designed with limited support for the needs of their day to day facilities. Methods:: The proposed system embedded with gesture recognition capability has been introduced here which extracts signs from a video sequence and displays them on screen. On the other hand, a speech to text as well as text to speech system is also introduced to further facilitate the grieved people. To get the best out of human computer relationship, the proposed solution consists of various cutting-edge technologies and Machine Learning based sign recognition models which have been trained by using Tensor Flow and Keras library. Result:: The proposed architecture works better than several gesture recognition techniques like background elimination and conversion to HSV because of sharply defined image provided to the model for classification. The results of testing indicate reliable recognition systems with high accuracy that includes most of the essential and necessary features for any deaf and dumb person in his/her day to day tasks. Conclusion:: It’s the need of current technological advances to develop reliable solutions which can be deployed to assist deaf and dumb people to adjust to normal life. Instead of focusing on a standalone technology, a plethora of them have been introduced in this proposed work. Proposed Sign Recognition System is based on feature extraction and classification. The trained model helps in identification of different gestures.


Sign in / Sign up

Export Citation Format

Share Document