motion controller
Recently Published Documents


TOTAL DOCUMENTS

684
(FIVE YEARS 164)

H-INDEX

27
(FIVE YEARS 5)

Author(s):  
Ángela Aguilera-Rubio ◽  
Isabel M. Alguacil-Diego ◽  
Ana Mallo-López ◽  
Alicia Cuesta-Gómez

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dier Wang ◽  
Jun Zhang

Purpose This paper aims to improve the infilling efficiency and the quality of parts forming. It proposes two improved scanning path planning algorithm based on velocity orthogonal decomposition. Design/methodology/approach The algorithms this paper proposes replace empty paths and corners with circular segments, driving each axis synchronously according to the SIN or COS velocity curve to make the extruder always moves at a constant speed at maximum during the infilling process. Also, to support the improved algorithms, a three-dimensional (3D) printing control system based on circular motion controller is also designed. Findings The simulation and experiment results show that the improved algorithms are effective, and the printing time is shortened more significantly, especially in the case of small or complex models. What’s more, the optimized algorithm is not only compact in shape but also not obvious in edge warping. Research limitations/implications The algorithms in this paper are not applicable to traditional motion controllers. Practical implications The algorithms in this paper improve the infilling efficiency and the quality of parts forming. Social implications There are no social implications in this paper. Originality/value The specific optimization method of parallel-line scanning algorithm based on velocity orthogonal decomposition is replacing the empty paths with arc corners. And the specific optimization method of contour offsetting algorithm based on velocity orthogonal decomposition is to add connection paths between adjacent contours and turn all straight corners into arcs. What’s more, the 3D printing control system based on the circular motion controller can achieve multi-axis parallel motion to support these two improved path scanning algorithms.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Fabio A. A. Andrade ◽  
Ihannah P. Guedes ◽  
Guilherme F. Carvalho ◽  
Alessandro R. L. Zachi ◽  
Diego B. Haddad ◽  
...  

One of the main challenges of maneuvering an Unmanned Aerial Vehicle (UAV) to keep a stabilized flight is dealing with its fast and highly coupled nonlinear dynamics. There are several solutions in the literature, but most of them require fine-tuning of the parameters. In order to avoid the exhaustive tuning procedures, this work employs a Fuzzy Logic strategy for online tuning of the PID gains of the UAV motion controller. A Cascaded-PID scheme is proposed, in which velocity commands are calculated and sent to the flight control unit from a given target desired position (waypoint). Therefore, the flight control unit is responsible for the lower control loop. The main advantage of the proposed method is that it can be applied to any UAV without the need of its formal mathematical model. Robot Operating System (ROS) is used to integrate the proposed system and the flight control unit. The solution was evaluated through flight tests and simulations, which were conducted using Unreal Engine 4 with the Microsoft AirSim plugin. In the simulations, the proposed method is compared with the traditional Ziegler-Nichols tuning method, another Fuzzy Logic approach, and the ArduPilot built-in PID controller. The simulation results show that the proposed method, compared to the ArduPilot controller, drives the UAV to reach the desired setpoint faster. When compared to Ziegler-Nichols and another different Fuzzy Logic approach, the proposed method demonstrates to provide a faster accommodation and yield smaller errors amplitudes.


2021 ◽  
Vol 10 (6) ◽  
pp. 3834-3836
Author(s):  
Prasad Dhage

Stroke patients have limited everyday tasks. For that videogame-based training (VBT) with the effect of virtual reality helps to improve the role of upper limb and motor function of hand rehabilitation (finger pinch grip). The Leap motion controller can track the both extremities (hand and fingers) fine movements. The study will demonstrate the impact of the leap motion controller on pinch grip in patient with sub-acute and chronic stroke. The total of 40 participants will be taken for study as per inclusion and exclusion criteria. The duration of the study will be six months with intervention. Leap motion -based, augmented reality training will be provided to patients for half hour, Every single day, 5days of the week a month. Formant’s sign and system usability scale will be taken. Those two will be the patient’s measure outcomes. Impact of the leap motion controller device will be evaluated by using the system usability scale and Formant’s sign. The result from the study will significantly provide evidence on the use of Leap motion controller on pinch grip in subacute and chronic stroke patient.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 130
Author(s):  
Marcus R. S. B. de Souza ◽  
Rogério S. Gonçalves ◽  
Giuseppe Carbone

The leap motion controller is a commercial low-cost marker-less optical sensor that can track the motion of a human hand by recording various parameters. Upper limb rehabilitation therapy is the treatment of people having upper limb impairments, whose recovery is achieved through continuous motion exercises. However, the repetitive nature of these exercises can be interpreted as boring or discouraging while patient motivation plays a key role in their recovery. Thus, serious games have been widely used in therapies for motivating patients and making the therapeutic process more enjoyable. This paper explores the feasibility, accuracy, and repeatability of a leap motion controller (LMC) to be applied in combination with a serious game for upper limb rehabilitation. Experimental feasibility tests are carried out by using an industrial robot that replicates the upper limb motions and is tracked by using an LMC. The results suggest a satisfactory performance in terms of tracking accuracy although some limitations are identified and discussed in terms of measurable workspace.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manlu Liu ◽  
Rui Lin ◽  
Maotao Yang ◽  
Anaid V. Nazarova ◽  
Jianwen Huo

Purpose The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To improve the anti-interference performance of spherical robots in practical engineering, this paper proposes a spherical robot motion controller based on auto-disturbance rejection control (ADRC) with parameter tuning. Design/methodology/approach This paper considers the influences of the spherical shell, internal frame and pendulum on the movement of the spherical robot during the rotation to establish the multi-body dynamics model of the XK-I spherical robot. Due to the serious coupling problem of the dynamic model, the motion control state equation is constructed using linearization and decoupling. The XK-I spherical robot PSO-ADRC motion controller with parameter tuning function is designed by combining the state equation with the particle swarm optimization (PSO) algorithm. Finally, experiments are performed to evaluate the feasibility of PSO-ADRC in an actual case compared to ADRC, PSO-PID and PID. Findings By analyzing the required time to reach the expected value, the control stability and the fluctuation range of the standard deviation after reaching the expected value, the superiority of PSO-ADRC to ADRC, PSO-PID and PID is demonstrated in terms of the speed and anti-interference ability. Practical implications The proposed method can be applied to the robot control field. Originality/value A parameter-tuning method for auto-disturbance-rejection motion control of the spherical robot is proposed. According to the experimental results, the anti-interference ability of the spherical robot moving on uneven ground is improved. Therefore, it provides a foundation for the autonomous environmental monitoring of the spherical robot equipped with sensors.


2021 ◽  
Vol 11 (22) ◽  
pp. 10991
Author(s):  
Michelangelo Nigro ◽  
Francesco Pierri ◽  
Fabrizio Caccavale

This paper presents a motion control scheme for a new concept of omnidirectional aerial vehicle for transportation and manipulation tasks. The considered aerial platform is a novel quadrotor with the capability of providing multi-directional thrust by adding an actuated gimbal mechanism in charge of modifying the orientation of the frame on which the four rotors are mounted. The above mechanical design, differently from other omnidirectional unmanned aerial vehicles (UAVs) with tilted propellers, avoids internal forces and energy dissipation due to non-parallel propellers’ axes. The proposed motion controller is based on a hierarchical two-loop scheme. The external loop computes the force to be applied to the vehicle and the reference values for the additional joints, while the inner loop computes the joint torques and the moment to be applied to the multirotor. In order to make the system robust with respect to the external loads, a compensation of contact forces is introduced by exploiting the estimate provided by a momentum based observer. The stability of the motion control scheme is proven via Lyapunov arguments. Finally, two simulation case studies prove the capability of the omnidirectional UAV platform to track a 6-DoFs trajectory both in free motion and during a task involving grasping and transportation of an unknown object.


2021 ◽  
Author(s):  
Saeed Rahimi ◽  
Hasan Jalali ◽  
Mohammad Reza Hairi Yazdi ◽  
Ahmad Kalhor ◽  
Mehdi Tale Masouleh

Sign in / Sign up

Export Citation Format

Share Document