scholarly journals Characteristics of two complex rock and glacier avalanches and RAMMS simulation of a long-runout disaster in the Sedongpu Basin of the Yarlung Zangbo River downstream in October 2018, Tibet, China

Author(s):  
Tiantian Zhang ◽  
Yueping Yin ◽  
Bin Li ◽  
Yang Gao ◽  
Meng Wang

Abstract On October 17 and 29, 2018, two rock and glacier avalanches occurred on the western slope of the Sedongpu Basin upstream of the Yarlung Zangbo River in the Tibetan Plateau, forming the disaster chains and causing damage to many bridges and roads. Based on the comparative analysis of multiple pre-and post-remote sensing images, the initial sliding body, which was composed of rock and glacial material, was located on a steep slope above an elevation of 6000 m. Under the coupling effect of multiple factors such as gravity, rainfall, and weather changes, the initial sliding body detached from the source zone and then transformed into a debris flow after impact and fragmentation. The debris flow traveled downstream and scraped loose glacial till in its path, causing the volume of the sliding body to increase. In addition, the debris flow traveled 10 km under low frictional resistance, as a result of the lubrication via early rainfall and glacial meltwater. Eventually, the debris flow rushed out onto the valley floor, forming a landslide dam and blocking the Yarlung Zangbo River. The deposit volumes on October 17 and 29 were 20.4 million m3 and 10.1 million m3, respectively, with a total mean thickness of ~22m. This study provides an insight into the dynamic process as they unfolded, through multitemporal satellite imagery and numerical simulation. Furthermore, we also discuss the potential cause of rock/ice avalanche and disaster scenarios, as well as the tendency of the rock and glacier avalanches are discussed.

2021 ◽  
Author(s):  
Paola Capone ◽  
Vincenzo Del Gaudio ◽  
Janusz Wasowski ◽  
Wei Hu ◽  
Nicola Venisti ◽  
...  

<p>On 12 May 2008, the mountainous area of Longmenshan, which separates the Tibetan Plateau from the Sichuan Basin, was hit by the 8.0 Ms Wenchuan earthquake which triggered about 200,000 landslides, some of which caused river damming with the formation of temporary lakes. Failures of the landslide dams can induce severe flooding downstream, therefore, it is important to study their structure and mechanical properties in order to evaluate their stability conditions.</p><p>The present study investigates the landslide dam deposits of a rock avalanche triggered in Yang Jia Gou, in Sichuan Province, using single-station three component recordings of ambient noise, with the aim of obtaining information about thickness and mechanical properties of the deposits from their resonance properties. Three noise measurement campaigns and two ERT surveys were conducted to support data interpretation. The data were analyzed using the traditional Nakamura’s technique, HVNR, and the innovative technique HVIP, both based on the calculation of ratios between horizontal and vertical amplitude of ground motion. Both methods revealed the presence  of resonance peaks, a major one at lower frequency, and a minor one at higher frequencies, representative of the deposit layering. HVNR showed a considerable instability in terms of amplitude of H/V, likely because this technique analyzes the entire noise wave field recorded, so to be subject to a large variability related to a variable composition of the noise field. This problem does not affect the HVIP method, which is based on the analysis of the ellipticity of Rayleigh waves, isolated from the recording.</p><p>Rayleigh wave ellipticity curves were used as targets in the inversion phase to obtain the velocity profile of the site. The subsoil model was  constrained by the data derived from the resistivity profiles. The results revealed:  different velocity layers inside the deposit; lateral variations in thickness, in accordance with the higher frequency peak, and in mechanical properties, with an increase of stiffness, probably due to a major portion of rocky blocks; an increase in thickness of the entire deposit, probably because of the irregularities of the substrate.</p><p>Further investigations are in progress through other kinds of noise analysis exploiting the synchronization of simultaneous recordings. This can provide additional constraints (to be derived from the dispersion of group velocity of Rayleigh waves) and aid resolving interpretation ambiguities.</p>


2014 ◽  
Vol 638-640 ◽  
pp. 2015-2018
Author(s):  
Qing Nian Yang ◽  
Shuai Tao Wu ◽  
Zhi Li

The research targets at the transition zone from the southeastern margin of the Tibetan Plateau to the Sichuan Basin; it is shown according to field survey: from 2008 to 2010, debris flow occurred twice, resulting in missing of two people, destruction on a lot of farmland and other serious disasters. Such the debris flows were because that the original vegetation was severely damaged after “5.12” earthquake, a lot of loose blocks were scattered in slopes and valleys, and also stimulated by abundant rainfall during rainy season, local steep terrain, as well as narrow valleys. The paper makes qualitative and quantitative evaluation on risk of debris flow within the region by single-valley debris flow risk evaluation method as proposed by Liu Xilin and Tang Chuan et al. it is shown from the results that the risk level H is 0.55, within scope of moderate risk. In case of any adverse conditions, debris flows may occur again.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kun-Ting Chen ◽  
Xiao-Qing Chen ◽  
Gui-Sheng Hu ◽  
Yu-Shu Kuo ◽  
Yan-Rong Huang ◽  
...  

In this study, we develop a dimensionless assessment method to evaluate landslide dam formation by considering the relationship between the run-out distance of a tributary debris flow and the width of the main stream, deposition thickness of the tributary debris flow, and the water depth of the main stream. Based on the theory of debris flow run-out distance and fan formation, landslide dam formation may result from a tributary debris flow as a result of two concurrent formation processes: (1) the run-out distance of the tributary debris flow must be greater than the width of the main stream, and (2) the minimum deposition thickness of the tributary debris flow must be higher than the in situ water depth of the main stream. At the confluence, one of four types of depositional scenarios may result: (1) the tributary debris flow enters into the main stream and forms a landslide dam; (2) the tributary debris flow enters into the main stream but overflow occurs, thus preventing complete blockage of the main stream; (3) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment remains partially above the water elevation of the main stream; or (4) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment is fully submerged in the main stream. This method was applied to the analysis of 11 tributary debris flow events during Typhoon Morakot, and the results indicate that the dimensionless assessment method can be used to estimate potential areas of landslide dam formation caused by tributary debris flows. Based on this method, government authorities can determine potential areas of landslide dam formation caused by debris flows and mitigate possible disasters accordingly through a properly prepared response plan, especially for early identification.


2020 ◽  
Author(s):  
Theresa Frimberger ◽  
Franziska Petry ◽  
Michael Krautblatter

<p>Lahars rank as one of the most destructive hazards at Cotopaxi volcano (5897 m asl) due to the presence of a massive glacier cap, the frequency of eruptions and the high population density in the surrounding, potentially inundated valleys. In 1877, Cotopaxi experienced the last major VEI 3-4 eruption, producing syneruptive lahars of 60-100 million m<sup>3 </sup>that travelled hundreds of km downstream.  Few lahar simulations based on empirical or fluid dynamic approaches exist for Cotopaxi, but here we introduce a calibrated numerical debris flow model capable of reproducing confluence and erosivity of flows.</p><p>In this study, we back-calculate the well documented 1877 lahar event using the 2D debris flow model RAMMS, which is based on the Voellmy-Salm friction approach and includes an entrainment algorithm. We first evaluate the sensitivity and range of possible model input parameters by systematically varying model inputs for release volume, density and frictional resistance (Coulomb type friction μ [-] and turbulent friction ξ [ms<sup>-2</sup>]). Supported by a probabilistic analysis, we find that a choice of historical and field-derived calibration metrics of the 1877 lahar event along the northern lahar trajectory can well constrain most likely input parameters for frictional resistance. Our results show that modelling large-scale primary lahars at Cotopaxi is strongly controlled by very small values for Coulomb friction μ (0.005-0.015). Finally, we apply the calibrated model to typical eruption scenarios of Cotopaxi (VEI 1 to >4) in order to enable a realistic lahar hazard representation.</p><p>Considering the rapid rise of the equilibrium-line altitude of tropical Andean glaciers together with reports on secondary lahars at the eastern flank of Cotopaxi without any clear trigger, we hypothesize a process-based link between the two phenomena.  Geoelectrical and refraction seismic field surveys near the glacier margin (5000- 5300 m asl) have been conducted in order to gain a better understanding of the structure, conditions and degree of freezing of the subsurface, which is dominated by loose pyroclastic material and interbedded lava layers. The tomography results are highlighted within the concept of permafrost degradation and accompanied material weakening as potential triggering mechanism for secondary lahars.</p><p>Here we show 1) a carefully calibrated numerical lahar model at Cotopaxi capable of reproducing previously non-respected effects such as confluence, erosion reach and propagation speed, and 2) first measurements addressing the role of glacier retreat on the formation of secondary lahars. Our results contribute to the multi-hazard risk assessment in the RIESGOS project funded by the German Ministry of Education and Research.</p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2338
Author(s):  
Zhicheng Xu ◽  
Lei Cheng ◽  
Peng Luo ◽  
Pan Liu ◽  
Lu Zhang ◽  
...  

Global warming has a profound influence on global and regional water cycles, especially in the cold mountainous area. However, detecting and quantifying such changes are still difficult because noise and variability in observed streamflow are relatively larger than the long-term trends. In this study, the impacts of global warming on the catchment water cycles in the Yarlung Zangbo River Basin (YZRB), one of most important catchments in south of the Tibetan Plateau, are quantified using a climatic approach based on the relationship between basin-scale groundwater storage and low flow at the annual time scale. By using a quantile regression method and flow recession analysis, changes in low flow regimes and basin-scale groundwater storage at the Nuxia hydrological station are quantified at the annual time scale during 1961–2000. Results show annual low flows (10th and 25th annual flows) of the YZRB have decreased significantly, while long-term annual precipitation, total streamflow, and high flows are statistically unchanged. Annual lowest seven-day flow shows a significantly downward trend (2.2 m3/s/a, p < 0.05) and its timing has advanced about 12 days (2.8 day/10a, p < 0.1) during the study period. Estimated annual basin-scale groundwater storage also shows a significant decreasing trend at a rate of 0.079 mm/a (p < 0.05) over the study period. Further analysis suggests that evaporation increase, decreased snow-fraction, and increased annual precipitation intensity induced by the rising temperature possibly are the drivers causing a significant decline in catchment low flow regimes and groundwater storage in the study area. This highlights that an increase in temperature has likely already caused significant changes in regional flow regimes in the high and cold mountainous regions, which has alarming consequences in regional ecological protection and sustainable water resources management.


Author(s):  
Jonathan King ◽  
Ian Loveday ◽  
Robert L. Schuster

2020 ◽  
Author(s):  
Huayong Chen ◽  
Chunran Cao ◽  
Xiaoqing Chen ◽  
Jiangang Chen

&lt;p&gt;Besides the numerous artificial dams, there are some other kind of dams distribute such as the glacier dams, moraine dams, landslide dams, and the debris flow dams in China. Especially, the landslide dams and debris flow ones widely distribute in southwest of China after the M8.0 Wenchuan earthquake. Much attention has been paid to the formation, stability, breach process, and the peak discharge prediction of a landslide dam. However few achievements are obtained on the debris flow dams even if the failure of a debris flow dam has posed great threat to the property and life of residents downstream. In this paper, based on the main difference between a landslide and debris flow dam, experiments were conducted by considering different clay content, the initial water content, and incoming water flow. It indicated that the failure duration of a debris flow dam was about 1.60 times as long as that than that of a landslide dam. The peak discharge at the debris flow dam breach was 5.38 L/s. However, the peak discharge at the landslide dam was 7.50 L/s, which was 1.39 times as big as that of a debris flow dam. Finally, by modifying the existing critical initialization condition for the landslide dams, the critical initialization condition for a debris flow dam was proposed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document