Assessing lahar hazards at Cotopaxi volcano (Ecuador) controlled by volcanic eruptions and glacier retreat

Author(s):  
Theresa Frimberger ◽  
Franziska Petry ◽  
Michael Krautblatter

<p>Lahars rank as one of the most destructive hazards at Cotopaxi volcano (5897 m asl) due to the presence of a massive glacier cap, the frequency of eruptions and the high population density in the surrounding, potentially inundated valleys. In 1877, Cotopaxi experienced the last major VEI 3-4 eruption, producing syneruptive lahars of 60-100 million m<sup>3 </sup>that travelled hundreds of km downstream.  Few lahar simulations based on empirical or fluid dynamic approaches exist for Cotopaxi, but here we introduce a calibrated numerical debris flow model capable of reproducing confluence and erosivity of flows.</p><p>In this study, we back-calculate the well documented 1877 lahar event using the 2D debris flow model RAMMS, which is based on the Voellmy-Salm friction approach and includes an entrainment algorithm. We first evaluate the sensitivity and range of possible model input parameters by systematically varying model inputs for release volume, density and frictional resistance (Coulomb type friction μ [-] and turbulent friction ξ [ms<sup>-2</sup>]). Supported by a probabilistic analysis, we find that a choice of historical and field-derived calibration metrics of the 1877 lahar event along the northern lahar trajectory can well constrain most likely input parameters for frictional resistance. Our results show that modelling large-scale primary lahars at Cotopaxi is strongly controlled by very small values for Coulomb friction μ (0.005-0.015). Finally, we apply the calibrated model to typical eruption scenarios of Cotopaxi (VEI 1 to >4) in order to enable a realistic lahar hazard representation.</p><p>Considering the rapid rise of the equilibrium-line altitude of tropical Andean glaciers together with reports on secondary lahars at the eastern flank of Cotopaxi without any clear trigger, we hypothesize a process-based link between the two phenomena.  Geoelectrical and refraction seismic field surveys near the glacier margin (5000- 5300 m asl) have been conducted in order to gain a better understanding of the structure, conditions and degree of freezing of the subsurface, which is dominated by loose pyroclastic material and interbedded lava layers. The tomography results are highlighted within the concept of permafrost degradation and accompanied material weakening as potential triggering mechanism for secondary lahars.</p><p>Here we show 1) a carefully calibrated numerical lahar model at Cotopaxi capable of reproducing previously non-respected effects such as confluence, erosion reach and propagation speed, and 2) first measurements addressing the role of glacier retreat on the formation of secondary lahars. Our results contribute to the multi-hazard risk assessment in the RIESGOS project funded by the German Ministry of Education and Research.</p>

2021 ◽  
Author(s):  
Theresa Frimberger ◽  
Daniel Andrade ◽  
Michael Krautblatter

<p>As everywhere in the Andes, tropical glaciers have been rapidly retreating since several decades. The glaciers of Cotopaxi volcano, Ecuador, have been reduced in area by about 50% since 1976 (Cáceres, 2017). The Cotopaxi is mostly famous for its capacity to produce massive lahars during volcanic eruptions, but comparably smaller, secondary lahars generated in post-eruptive periods by heavy rainfall occur more frequently on the volcano’s flanks. However, since a few years, secondary lahars that originate in proglacial areas without any clear trigger mechanism are recorded at Cotopaxi. This raises the question of whether there exists a process-based link between the occurrence of secondary lahars and the retreat of cold-based glaciers with accompanied permafrost degradation in the former subglacial frozen pyroclastic material over the following years and decades.</p><p>Here, we present the data obtained from laboratory-calibrated Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) conducted near the glacier margin between 5000 and 5300 m asl, which provide a better understanding of frozen/unfrozen conditions and the structure of the subsurface. In addition, data loggers have been recording surface air temperatures close to the glacier since May 2018. Our measurements show that permafrost cannot develop under current thermal conditions, but high electrical resistivities at depths of 10-20 m correspond to calibrated rock temperatures below 0 °C. The detected frozen lenses may act as detachment planes of periglacial secondary lahars in pyroclastic material recently exposed by glacier retreat.</p><p> </p><p>Cáceres, B. (2017). Goal workshop 2017 Mexico 135 Evolución de los glaciares del Ecuador durante los últimos 60 años y su relación con el cambio climático. Conference paper: The role of Geosciences to societal development: A German-Latin American Perspective. GOAL Geo-Network of Latin American-German Alumini. P. 149. México: UANL-Monterrey-México.</p>


2015 ◽  
Vol 49 (1) ◽  
pp. 101-140 ◽  
Author(s):  
F. Bouchut ◽  
E.D. Fernández-Nieto ◽  
A. Mangeney ◽  
G. Narbona-Reina

Author(s):  
Martin Mergili ◽  
Michel Jaboyedoff ◽  
José Pullarello ◽  
Shiva P. Pudasaini

Abstract. In the morning of 23 August 2017, around 3 million m3 of granitoid rock broke off from the east face of Piz Cengalo, SE Switzerland. The initial rock slide-rock fall entrained 0.6 million m3 of a glacier and continued as a rock(-ice) avalanche, before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rock slide-rock fall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rock slide-rock fall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley; and (ii) most of the entrained glacier ice remaining beneath/behind the frontal rock avalanche, and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can be numerically reproduced with the two-phase mass flow model implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, fluid) including phase transitions, in order to better represent the melting of glacier ice, and a more appropriate consideration of deposition of debris flow material along the channel.


Landslides ◽  
2020 ◽  
Vol 17 (4) ◽  
pp. 913-930 ◽  
Author(s):  
Pierre Friele ◽  
Tom H. Millard ◽  
Andrew Mitchell ◽  
Kate E. Allstadt ◽  
Brian Menounos ◽  
...  

AbstractTwo catastrophic landslides occurred in quick succession on 13 and 16 May 2019, from the north face of Joffre Peak, Cerise Creek, southern Coast Mountains, British Columbia. With headscarps at 2560 m and 2690 m elevation, both began as rock avalanches, rapidly transforming into debris flows along middle Cerise Creek, and finally into debris floods affecting the fan. Beyond the fan margin, a flood surge on Cayoosh Creek reached bankfull and attenuated rapidly downstream; only fine sediment reached Duffey Lake. The toe of the main debris flow deposit reached 4 km from the headscarp, with a travel angle of 0.28, while the debris flood phase reached the fan margin 5.9 km downstream, with a travel angle of 0.22. Photogrammetry indicates the source volume of each event is 2–3 Mm3, with combined volume of 5 Mm3. Lidar differencing, used to assess deposit volume, yielded a similar total result, although error in the depth estimate introduced large volume error masking the expected increase due to dilation and entrainment. The average velocity of the rock avalanche-debris flow phases, from seismic analysis, was ~ 25–30 m/s, and the velocity of the 16 May debris flood on the upper fan, from super-elevation and boulder sizes, was 5–10 m/s. The volume of debris deposited on the fan was ~ 104 m3, 2 orders of magnitude less than the avalanche/debris flow phases. Progressive glacier retreat and permafrost degradation were likely the conditioning factors; precursor rockfall activity was noted at least ~6 months previous; thus, the mountain was primed to fail. The 13 May landslide was apparently triggered by rapid snowmelt, with debuttressing triggering the 16 May event.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Ignazio Licata ◽  
Elmo Benedetto

This paper proposes a computational approach to debris flow model. In recent years, the theoretical activity on the classical Herschel-Bulkley model (1926) has been very intense, but it was in the early 80s that the opportunity to explore the computational model has enabled considerable progress in identifying the subclasses of applicability of different sets of boundary conditions and their approximations. Here we investigate analytically the problem of the simulation of uniform motion for heterogeneous debris flow laterally confined taking into account mainly the geological data and methodological suggestions derived from simulation with cellular automata and grid systems, in order to propose a computational scheme able to operate a compromise between “global” predictive capacities and computing effort.


2020 ◽  
Author(s):  
Tamara Mathys ◽  
Christin Hilbich ◽  
Cassandra E.M. Koenig ◽  
Lukas Arenson ◽  
Christian Hauck

<p>With climate change and the associated continuing recession of glaciers, water security, especially in regions depending on the water supply from glaciers, is threatened. In this context, the understanding of permafrost distribution and its degradation is of increasing importance as it is currently debated whether ground ice can be considered as a significant water reservoir and as an alternative resource of fresh water that could potentially moderate water scarcity during dry seasons in the future. Thus, there is a pressing need to better understand how much water is stored as ground ice in areas with extensive permafrost occurrence and how meltwater from permafrost degradation may contribute to the hydrological cycle in the region.</p><p>Although permafrost and permafrost landforms in the Central Andes are considered to be abundant and well developed, the data is scarce and understanding of the Andean cryosphere lacking, especially in areas devoid of glaciers and rock glaciers.</p><p>In the absence of boreholes and test pits, geophysical investigations are a feasible and cost-effective technique to detect ground ice occurrences within a variety of landforms and substrates. In addition to the geophysical surveys themselves, upscaling techniques are needed to estimate ground ice content, and thereby future water resources, on larger spatial scales. To contribute to reducing the data scarcity regarding ground ice content in the Central Andes, this study focuses on the permafrost distribution and the ground ice content (and its water equivalent) of two catchments in the semi-arid Andes of Chile and Argentina. Geophysical methods (Electrical Resistivity Tomography, ERT and Refraction Seismic Tomography, RST) were used to detect and quantify ground ice in the study regions in the framework of environmental impact assessments in mining areas. Where available, ERT and RST measurements were quantitatively combined to estimate the volumetric ground ice content using the Four Phase Model (Hauck et al., 2011). Furthermore, we developed one of the first methodologies for the upscaling of these geophysical-based ground ice quantifications to an entire catchment in order to estimate the total ground ice volume in the study areas.</p><p>In this contribution we will present the geophysical data, the upscaling methodology used to estimate total ground ice content (and water equivalent) of permafrost areas, and some first estimates of total ground ice content in rock glacier and rock glacier free areas and compare them to conventional estimates using remotely sensed data.</p><p> </p><p>Hauck, C., Böttcher, M., and Maurer, H. (2011). A new model for estimating subsurface ice content based on combined electrical and seismic datasets, The Cryosphere, 5: 453-468.</p>


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kyoko S. Kataoka ◽  
Kae Tsunematsu ◽  
Takane Matsumoto ◽  
Atsushi Urabe ◽  
Katsuhisa Kawashima

AbstractTwo-thirds of the 111 active volcanoes in Japan are covered with snow for several months during winter and demonstrate high hazard and risk potentials associated with snow-related lahars during and after eruptions. On 23 January 2018, a sudden phreatic eruption occurred at the ski field on Kusatsu-Shirane (Mt. Motoshirane) volcano, Japan. This new vent eruption from the snow-clad pyroclastic cone required forecasting of future snow-related lahars and crisis hazards zonation of downslope areas including Kusatsu town, a popular tourist site for skiing and hot springs. In order to achieve a prompt hazard assessment for snow-related lahars, a multidisciplinary approach was carried out involving characterization of proximal tephra deposits, snow surveys, and numerical lahar flow simulations using the Titan2D model. To determine the input parameters for the flow model, the consideration of snow water equivalent (SWE) immediately after the eruption (on 29 January) and in the post-eruptive period (on 12 March), was significant. In the case of Kusatsu-Shirane volcano during the winter of 2018, linear relationships between altitude and SWE, obtained at different elevations, were used to estimate the snow volume around the new vents. Several scenarios incorporating snow and snowmelt (water), with or without the occurrence of a new eruption, were simulated for the prediction of future lahars. Three lahar scenarios were simulated, including A) rain-on-snow triggered, B) ice/snow slurry, and C) full snowmelt triggered by a new eruption, and indicated the flow paths (inundation areas) and travel distances. These were useful for lahar hazard zonation and identification of potential high-risk areas. Since the input parameters required for the Titan2D flow model can be relatively easily determined, the model was suitable for the 2018 eruption at Motoshirane where historical and geological lahar records are not available for calibration. The procedure used in the study will enable rapid lahar prediction and hazard zonation at snow-clad volcanoes. Further consideration for simulating a cohesive-type flow, which was predicted by the primary deposits containing large amounts of clay minerals and could not be expressed in the Titan2D flow model, is necessary.


2013 ◽  
Vol 62 (2) ◽  
pp. 136-149 ◽  
Author(s):  
Bodo Damm ◽  
Astrid Felderer

Abstract. In der vorliegenden Arbeit wird die Bedeutung der Erwärmung der Kryosphäre seit dem Ende der Kleinen Eiszeit (LIA) für die räumliche Verbreitung von Muranrissen in einem zentralalpinen Gebiet der Ostalpen untersucht. Vor dem Hintergrund der atmosphärischen Erwärmung verursachte hier insbesondere die Degradation von Permafrost bodenmechanische Instabilitäten. Im Untersuchungsgebiet, dem Naturpark Rieserferner-Ahrn in Südtirol lässt sich zeigen, dass mehr als die Hälfte der Muranrisse in Lockergesteinen auftreten, unter anderem in Moränen- und Hangschuttablagerungen, die vor rund 150 Jahren noch durch Gletschereis und Permafrost stabilisiert waren.


Sign in / Sign up

Export Citation Format

Share Document