Nuclear Morphology Optimized Deep Hybrid Learning (NUMODRIL) For Accurate Diagnosis and Prognosis of Ovarian Cancer
Abstract Nuclear morphological features are potent determining factors for clinical diagnostic approaches adopted by pathologists to analyse the malignant potential of cancer cells. Considering the structural alteration of nucleus in cancer cells, various groups have developed machine learning techniques based on variation in nuclear morphometric information like nuclear shape, size, nucleus-cytoplasm ratio and various non-parametric methods like deep learning have also been tested for analysing immunohistochemistry images of tissue samples for diagnosing various cancers. Our aim is to study the morphometric distribution of nuclear lamin proteins as a specific parameter in ovarian cancer tissues. Besides being the principal mechanical component of the nucleus, lamins also present a platform for binding of proteins and chromatin thereby serving a wide range of nuclear functions like maintenance of genome stability, chromatin regulation. Altered expression of lamins in different subtypes of cancer is now evident from data across the world. It has already been elucidated that in ovarian cancer, extent of alteration in nuclear shape and morphology can determine degree of genetic changes and thus can be utilized to predict the outcome of low to high form of serous carcinoma. In this work, we have performed exhaustive imaging of ovarian cancer versus normal tissue and introduced a novel Deep Hybrid Learning approach on the basis of the distribution of lamin proteins. Although developed with ovarian cancer datasets in view, this architecture would be of immense importance in accurate and fast diagnosis and prognosis of all types of cancer associated with lamin induced morphological changes and would perform across small/medium to large datasets with equal efficiency.