A Novel Design of All-optical Full-adder Using Nonlinear X-shaped Photonic Crystal Resonators
Abstract This paper proposes a new all-optical full-adder design based on nonlinear X-shaped photonic crystal (PhC) resonators. The PhC-based full-adder consists of three input ports, two X-shaped PhC resonators (X-PCRs), and two output ports. The dielectric rods made of silicon and nonlinear rods composed of doped glass are used to design the X-PCRs. Two well-known plane wave expansion and finite difference time domain methods are applied to study and analyze the photonic band structure and light propagation inside the PhC, respectively. Our numerical results demonstrate when the incoming light intensity increases, the nonlinear Kerr effect appears and manages the direction of light propagation inside the structure. The maximum time delay and footprint of the proposed full-adder are about 2.5ps and 663 μm2, making it an appropriate adder for high-speed data processing systems.