scholarly journals The 30 October 2020 Samos (Eastern Aegean Sea) Earthquake: effects of source rupture, path and local-site conditions on the observed and simulated ground motions

Author(s):  
Aybige Akinci ◽  
Daniele Cheloni ◽  
AHMET ANIL DINDAR

Abstract On 30 October 2020 a MW 7.0 earthquake occurred in the eastern Aegean Sea, between the Greek island of Samos and Turkey’s Aegean coast, causing considerable seismic damage and deaths, especially in the Turkish city of Izmir, approximately 70 km from the epicenter. In this study, we provide a detailed description of the Samos earthquake, starting from the fault rupture to the ground motion characteristics. We first use Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data to constrain the source mechanisms. Then, we utilize this information to analyze the ground motion characteristics of the mainshock in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and spectral pseudo-accelerations. Modelling of geodetic data shows that the Samos earthquake ruptured a NNE-dipping normal fault located offshore north of Samos, with up to 2.5-3 m of slip and an estimated geodetic moment of 3.3 ⨯ 1019 Nm (MW 7.0). Although low PGA were induced by the earthquake, the ground shaking was strongly amplified in Izmir throughout the alluvial sediments. Structural damage observed in Izmir reveals the potential of seismic risk due to the local site effects. To better understand the earthquake characteristics, we generated and compared stochastic strong ground motions with the observed ground motion parameters as well as the ground motion prediction equations (GMPEs), exploring also the efficacy of the region-specific parameters which may be improved to better predict the expected ground shaking from future large earthquakes in the region.

2021 ◽  
Author(s):  
Eser Çakti ◽  
Karin Sesetyan ◽  
Ufuk Hancilar ◽  
Merve Caglar ◽  
Emrullah Dar ◽  
...  

<p>The Mw 6.9 earthquake that took place offshore between the Greek island of Samos and Turkey’s İzmir province on 30 October 2020 came hardly as a surprise. Due to the extensional tectonic regime of the Aegean and high deformation rates, earthquakes of similar size frequently occur in the Aegean Sea on fault segments close to the shores of Turkey, affecting the settlements on mainland Turkey and on the Greek Islands. Samos-Sigacik earthquake had a normal faulting mechanism. It was recorded by the strong motion networks in Turkey and Greece. Although expected, the earthquake was an  outstanding event in the sense of  highly localized, significant levels of building damage as a result of amplified ground motion levels. This presentation is an overview of strong ground motion characteristics of this important event both regionally and locally. Mainshock records suggest that local site effects, enhanced by basin effects could be responsible for structural damage in central Izmir, the third largest city of Turkey located at 60-70 km epicentral distance. We installed a seven-station network in Bayraklı and Karşıyaka districts of İzmir within three days of the mainshock in search of site and basin effects.  Through analysis of recorded aftershocks we explore the amplification characeristics of soils in the two aforementioned districts  and try to understand the role basin effects might have played in the resulting ground motion levels and consequently damage. </p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Mitsuyuki Hoshiba

Earthquake early warning (EEW) systems aim to provide advance warning of impending ground shaking, and the technique used for real-time prediction of shaking is a crucial element of EEW systems. Many EEW systems are designed to predict the strength of seismic ground motions (peak ground acceleration, peak ground velocity, or seismic intensity) based on rapidly estimated source parameters (the source-based method), such as hypocentral location, origin time, magnitude, and extent of fault rupture. Recently, however, the wavefield-based (or ground-motion-based) method has been developed to predict future ground motions based directly on the current wavefield, i.e., ground motions monitored in real-time at neighboring sites, skipping the process of estimation of the source parameters. The wavefield-based method works well even for large earthquakes with long duration and huge rupture extents, highly energetic earthquakes that deviate from standard empirical relations, and multiple simultaneous earthquakes, for which the conventional source-based method sometimes performs inadequately. The wavefield-based method also enables prediction of the ongoing seismic waveform itself using the physics of wave propagation, thus providing information on the duration, in addition to the strength of strong ground motion for various frequency bands. In this paper, I review recent developments of the wavefield-based method, from simple applications using relatively sparse observation networks to sophisticated data assimilation techniques exploiting dense networks.


2016 ◽  
Vol 59 ◽  
Author(s):  
Marta Pischiutta ◽  
Aybige Akinci ◽  
Luca Malagnini ◽  
André Herrero

<em>The 2016 August 24 Amatrice earthquake occurred at 03:36 local time in Central Apennines Italy with an epicentre at 43.36<sup>°</sup>E, 38.76<sup>°</sup>N, Istituto Nazionale di Geofisica e Vulcanologia (INGV), few kilometers north of the city of Amatrice. The earthquake ruptured a North-West (NW)–South-East (SE) oriented normal fault dipping toward the South-West (SW) (Scognamiglio et al., 2016). High values of peak ground acceleration (~0.45 g) were observed close to Amatrice (3 stations being few kilometer distances from the fault). The present study presents an overview of the main features of the seismic ground shaking during the Amatrice earthquake. We analyze the ground motion characteristics of the main shock in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and spectral accelerations (SA, 5 per cent of critical damping). In order to understand the characteristics of the ground motions induced by Amatrice earthquake, we also study the source-related effects relative to the fault rupture directivity.</em>


Crustaceana ◽  
2005 ◽  
Vol 78 (10) ◽  
pp. 1265-1267 ◽  
Author(s):  
A. Suat Ateş ◽  
Ali İşmen ◽  
Uğur Özekinci ◽  
C. Çiğdem Erdemir Yiğin

2017 ◽  
Vol 4 (2) ◽  
pp. 139-156
Author(s):  
Engin Meriç ◽  
Niyazi Avşar ◽  
M. Baki Yokeş ◽  
Fuat Şaroğlu ◽  
Erdoğan Ölmez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document