scholarly journals Real-Time Prediction of Impending Ground Shaking: Review of Wavefield-Based (Ground-Motion-Based) Method for Earthquake Early Warning

2021 ◽  
Vol 9 ◽  
Author(s):  
Mitsuyuki Hoshiba

Earthquake early warning (EEW) systems aim to provide advance warning of impending ground shaking, and the technique used for real-time prediction of shaking is a crucial element of EEW systems. Many EEW systems are designed to predict the strength of seismic ground motions (peak ground acceleration, peak ground velocity, or seismic intensity) based on rapidly estimated source parameters (the source-based method), such as hypocentral location, origin time, magnitude, and extent of fault rupture. Recently, however, the wavefield-based (or ground-motion-based) method has been developed to predict future ground motions based directly on the current wavefield, i.e., ground motions monitored in real-time at neighboring sites, skipping the process of estimation of the source parameters. The wavefield-based method works well even for large earthquakes with long duration and huge rupture extents, highly energetic earthquakes that deviate from standard empirical relations, and multiple simultaneous earthquakes, for which the conventional source-based method sometimes performs inadequately. The wavefield-based method also enables prediction of the ongoing seismic waveform itself using the physics of wave propagation, thus providing information on the duration, in addition to the strength of strong ground motion for various frequency bands. In this paper, I review recent developments of the wavefield-based method, from simple applications using relatively sparse observation networks to sophisticated data assimilation techniques exploiting dense networks.

2021 ◽  
Vol 9 ◽  
Author(s):  
Elisa Zuccolo ◽  
Gemma Cremen ◽  
Carmine Galasso

Several earthquake early warning (EEW) algorithms have been developed worldwide for rapidly estimating real-time information (i.e., location, magnitude, ground shaking, and/or potential consequences) about ongoing seismic events. This study quantitatively compares the operational performance of two popular regional EEW algorithms for European conditions of seismicity and network configurations. We specifically test PRobabilistic and Evolutionary early warning SysTem (PRESTo) and the implementation of the Virtual Seismologist magnitude component within SeisComP, VS(SC), which we use jointly with the SeisComP scanloc module for locating events. We first evaluate the timeliness and accuracy of the location and magnitude estimates computed by both algorithms in real-time simulation mode, accounting for the continuous streaming of data and effective processing times. Then, we focus on the alert-triggering (decision-making) phase of EEW and investigate both algorithms’ ability to yield accurate ground-motion predictions at the various temporal instances that provide a range of warning times at target sites. We find that the two algorithms show comparable performances in terms of source parameters. In addition, PRESTo produces better rapid estimates of ground motion (i.e., those that facilitate the largest lead times); therefore, we conclude that PRESTo may have a greater risk-mitigation potential than VS(SC) in general. However, VS(SC) is the optimal choice of EEW algorithm if shorter warning times are permissible. The findings of this study can be used to inform current and future implementations of EEW systems in Europe.


2020 ◽  
Author(s):  
Jannes Münchmeyer ◽  
Dino Bindi ◽  
Ulf Leser ◽  
Frederik Tilmann

<p>The key task of earthquake early warning is to provide timely and accurate estimates of the ground shaking at target sites. Current approaches use either source or propagation based methods. Source based methods calculate fast estimates of the earthquake source parameters and apply ground motion prediction equations to estimate shaking. They suffer from saturation effects for large events, simplified assumptions and the need for a well known hypocentral location, which usually requires arrivals at multiple stations. Propagation based methods estimate levels of shaking from the shaking at neighboring stations and therefore have short warning times and possibly large blind zones. Both methods only use specific features from the waveform. In contrast, we present a multi-station neural network method to estimate horizontal peak ground acceleration (PGA) anywhere in the target region directly from raw accelerometer waveforms in real time.</p><p>The three main components of our model are a convolutional neural network (CNN) for extracting features from the single-station three-component accelerograms, a transformer network for combining features from multiple stations and for transferring them to the target site features and a mixture density network to generate probabilistic PGA estimates. By using a transformer network, our model is able to handle a varying set and number of stations as well as target sites. We train our model end-to-end using recorded waveforms and PGAs. We use data augmentation to enable the model to provide estimations at targets without waveform recordings. Starting with the arrival of a P wave at any station of the network, our model issues real-time predictions at each new sample. The predictions are Gaussian mixtures, giving estimates of both expected value and uncertainties. The model can be used to predict PGA at specific target sites, as well as to generate ground motion maps.</p><p>We analyze the model on two strong motion data sets from Japan and Italy in terms of standard deviation and lead times. Through the probabilistic predictions we are able to give lead times for different levels of uncertainty and ground shaking. This allows to control the ratio of missed detections to false alerts. Preliminary analysis suggest that for levels between 1%g and 10%g our model achieves multi-second lead times even for the closest stations at a false-positive rate below 25%. For an example event at 50 km depth, lead times at the closest stations with epicentral distances below 20 km are 6 s and 7.5 s. This suggests that our model is able to effectively use the difference between P and S travel time and accurately assess the future level of ground shaking from the first parts of the P wave. It additionally makes effective use of the information contained in the absence of signal at other stations.</p>


2021 ◽  
Author(s):  
Aybige Akinci ◽  
Daniele Cheloni ◽  
AHMET ANIL DINDAR

Abstract On 30 October 2020 a MW 7.0 earthquake occurred in the eastern Aegean Sea, between the Greek island of Samos and Turkey’s Aegean coast, causing considerable seismic damage and deaths, especially in the Turkish city of Izmir, approximately 70 km from the epicenter. In this study, we provide a detailed description of the Samos earthquake, starting from the fault rupture to the ground motion characteristics. We first use Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data to constrain the source mechanisms. Then, we utilize this information to analyze the ground motion characteristics of the mainshock in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and spectral pseudo-accelerations. Modelling of geodetic data shows that the Samos earthquake ruptured a NNE-dipping normal fault located offshore north of Samos, with up to 2.5-3 m of slip and an estimated geodetic moment of 3.3 ⨯ 1019 Nm (MW 7.0). Although low PGA were induced by the earthquake, the ground shaking was strongly amplified in Izmir throughout the alluvial sediments. Structural damage observed in Izmir reveals the potential of seismic risk due to the local site effects. To better understand the earthquake characteristics, we generated and compared stochastic strong ground motions with the observed ground motion parameters as well as the ground motion prediction equations (GMPEs), exploring also the efficacy of the region-specific parameters which may be improved to better predict the expected ground shaking from future large earthquakes in the region.


2020 ◽  
Vol 110 (4) ◽  
pp. 1872-1886 ◽  
Author(s):  
Jessie K. Saunders ◽  
Brad T. Aagaard ◽  
Annemarie S. Baltay ◽  
Sarah E. Minson

ABSTRACT The ShakeAlert earthquake early warning system aims to alert people who experience modified Mercalli intensity (MMI) IV+ shaking during an earthquake using source estimates (magnitude and location) to estimate median-expected peak ground motions with distance, then using these ground motions to determine median-expected MMI and thus the extent of MMI IV shaking. Because median ground motions are used, even if magnitude and location are correct, there will be people outside the alert region who experience MMI IV shaking but do not receive an alert (missed alerts). We use 91,000 “Did You Feel It?” survey responses to the July 2019 Mw 6.4 and Mw 7.1 Ridgecrest, California, earthquakes to determine which ground-motion to intensity conversion equation (GMICE) best fits median MMI with distance. We then explore how incorporating uncertainty from the ground-motion prediction equation and the GMICE in the alert distance calculation can produce more accurate MMI IV alert regions for a desired alerting strategy (e.g., aiming to alert 95% of people who experience MMI IV+ shaking), assuming accurate source characterization. Without incorporating ground-motion uncertainties, we find MMI IV alert regions using median-expected ground motions alert fewer than 20% of the population that experiences MMI IV+ shaking. In contrast, we find >94% of the people who experience MMI IV+ shaking can be included in the MMI IV alert region when two standard deviations of ground-motion uncertainty are included in the alert distance computation. The optimal alerting strategy depends on the false alert tolerance of the community due to the trade-off between minimizing missed and false alerts. This is especially the case for situations like the Mw 6.4 earthquake when alerting 95% of the 5 million people who experience MMI IV+ also results in alerting 14 million people who experience shaking below this level and do not need to take protective action.


2020 ◽  
Vol 110 (3) ◽  
pp. 1276-1288
Author(s):  
Mitsuyuki Hoshiba

ABSTRACT Earthquake early warning (EEW) systems aim to provide advance warnings of impending strong ground shaking. Many EEW systems are based on a strategy in which precise and rapid estimates of source parameters, such as hypocentral location and moment magnitude (Mw), are used in a ground-motion prediction equation (GMPE) to predict the strength of ground motion. For large earthquakes with long rupture duration, the process is repeated, and the prediction is updated in accordance with the growth of Mw during the ongoing rupture. However, in some regions near the causative fault this approach leads to late warnings, because strong ground motions often occur during earthquake ruptures before Mw can be confirmed. Mw increases monotonically with elapsed time and reaches its maximum at the end of rupture, and ground motion predicted by a GMPE similarly reaches its maximum at the end of rupture, but actual generation of strong motion is earlier than the end of rupture. A time gap between maximum Mw and strong-motion generation is the first factor contributing to late warnings. Because this time gap exists at any point of time during the rupture, a late warning is inherently caused even when the growth of Mw can be monitored in real time. In the near-fault region, a weak subevent can be the main contributor to strong ground motion at a site if the distance from the subevent to the site is small. A contribution from a weaker but nearby subevent early in the rupture is the second factor contributing to late warnings. Thus, an EEW strategy based on rapid estimation of Mw is not suitable for near-fault regions where strong shaking is usually recorded. Real-time monitoring of ground motion provides direct information for real-time prediction for these near-fault locations.


2015 ◽  
Vol 10 (4) ◽  
pp. 667-677
Author(s):  
Yincheng Yang ◽  
◽  
Masato Motosaka ◽  

The use of the earthquake early warning system (EEWS), one of the most useful emergency response tools, requires that the accuracy of real-time ground motion prediction (GMP) be enhanced. This requires that waveform information at observation points along earthquake wave propagation paths (hereafter, front-site waveform information) be used effectively. To enhance the combined reliability of different systems, such as on-site and local/regional warning, we present a GMP method using front-site waveform information by applying a relevant vector machine (RVM). We present methodology and application examples for a case study estimating peak ground acceleration (PGA) and peak ground velocity (PGV) for earthquakes in the Miyagi-Ken Oki subduction zone. With no knowledge of source information, front site waveforms have been used to predict ground motion at target sites. Five input variables – earthquake PGA, PGD, pulse rise time, average period and theVpmax/Amaxratio – have been used for the first 4 to 6 seconds of P-waves in training a regression model. We found that RVM is a useful tool for the prediction of peak ground motion.


2019 ◽  
Vol 109 (4) ◽  
pp. 1524-1541 ◽  
Author(s):  
Elizabeth S. Cochran ◽  
Julian Bunn ◽  
Sarah E. Minson ◽  
Annemarie S. Baltay ◽  
Deborah L. Kilb ◽  
...  

Abstract We test the Japanese ground‐motion‐based earthquake early warning (EEW) algorithm, propagation of local undamped motion (PLUM), in southern California with application to the U.S. ShakeAlert system. In late 2018, ShakeAlert began limited public alerting in Los Angeles to areas of expected modified Mercalli intensity (IMMI) 4.0+ for magnitude 5.0+ earthquakes. Most EEW systems, including ShakeAlert, use source‐based methods: they estimate the location, magnitude, and origin time of an earthquake from P waves and use a ground‐motion prediction equation to identify regions of expected strong shaking. The PLUM algorithm uses observed ground motions directly to define alert areas and was developed to address deficiencies in the Japan Meteorological Agency source‐based EEW system during the 2011 Mw 9.0 Tohoku earthquake sequence. We assess PLUM using (a) a dataset of 193 magnitude 3.5+ earthquakes that occurred in southern California between 2012 and 2017 and (b) the ShakeAlert testing and certification suite of 49 earthquakes and other seismic signals. The latter suite includes events that challenge the current ShakeAlert algorithms. We provide a first‐order performance assessment using event‐based metrics similar to those used by ShakeAlert. We find that PLUM can be configured to successfully issue alerts using IMMI trigger thresholds that are lower than those implemented in Japan. Using two stations, a trigger threshold of IMMI 4.0 for the first station and a threshold of IMMI 2.5 for the second station PLUM successfully detect 12 of 13 magnitude 5.0+ earthquakes and issue no false alerts. PLUM alert latencies were similar to and in some cases faster than source‐based algorithms, reducing area that receives no warning near the source that generally have the highest ground motions. PLUM is a simple, independent seismic method that may complement existing source‐based algorithms in EEW systems, including the ShakeAlert system, even when alerting to light (IMMI 4.0) or higher ground‐motion levels.


Author(s):  
Gemma Cremen ◽  
Omar Velazquez ◽  
Benazir Orihuela ◽  
Carmine Galasso

AbstractRegional earthquake early warning (EEW) alerts and related risk-mitigation actions are often triggered when the expected value of a ground-motion intensity measure (IM), computed from real-time magnitude and source location estimates, exceeds a predefined critical IM threshold. However, the shaking experienced in mid- to high-rise buildings may be significantly different from that on the ground, which could lead to sub-optimal decision-making (i.e., increased occurrences of false and missed EEW alarms) with the aforementioned strategy. This study facilitates an important advancement in EEW decision-support, by developing empirical models that directly relate earthquake source parameters to resulting approximate responses in multistory buildings. The proposed models can leverage real-time earthquake information provided by a regional EEW system, to provide rapid predictions of structure-specific engineering demand parameters that can be used to more accurately determine whether or not an alert is triggered. We use a simplified continuum building model consisting of a flexural/shear beam combination and vary its parameters to capture a wide range of deformation modes in different building types. We analyse the approximate responses for the building model variations, using Italian accelerometric data and corresponding source parameter information from 54 earthquakes. The resulting empirical prediction equations are incorporated in a real-time Bayesian framework that can be used for building-specific EEW applications, such as (1) early warning of floor-shaking sensed by occupants; and (2) elevator control. Finally, we demonstrate the improvement in EEW alert accuracy that can be achieved using the proposed models.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuki Kodera ◽  
Naoki Hayashimoto ◽  
Koji Tamaribuchi ◽  
Keishi Noguchi ◽  
Ken Moriwaki ◽  
...  

In Japan, the nationwide earthquake early warning (EEW) system has been being operated by the Japan Meteorological Agency (JMA) since 2007, disseminating information on imminent strong ground motion to the general public and advanced technical users. In the beginning of the operation, the system ran based mainly on standard source-based algorithms with a point-source location estimate and ground motion prediction equation. The point-source algorithms successfully provided ground motion predictions with high accuracy during the initial operation; however, the 2011 Mw9.0 Tohoku-Oki earthquake and the subsequent intense aftershock and triggered earthquake activities underscored the weaknesses of the source-based approach. In this paper, we summarize major system developments after the Tohoku-Oki event to overcome the limits of the standard point-source algorithms and to enhance the EEW performance further. In addition, we evaluate how the system performance was influenced by the updates. One of significant improvements in the JMA EEW system was the implementation of two new ground motion prediction methods: the integrated particle filter (IPF) and propagation of local undamped motion (PLUM) algorithms. IPF is a robust point-source algorithm based on the Bayesian inference, and PLUM is a wavefield-based algorithm that predicts ground motions directly from observed shakings. Another notable update was the incorporation of new observation facilities including S-net, a large-scale ocean bottom seismometer network deployed along the Japan and Kuril trenches. The prediction accuracy and warning issuance performance analysis for the updated JMA EEW system showed that IPF improved the source-based ground motion prediction accuracy and reduced the risk of issuing overpredicted warnings. PLUM made the system less likely to underpredict strong ground motions and improved the warning issuance timeliness. The detection time analysis for the S-net incorporation suggested that S-net enabled the system to issue the first EEW report earlier than before the S-net incorporation for earthquakes around the Japan and Kuril trenches. Those findings indicate that the JMA EEW system has made substantial progress both on software and hardware aspects over the 10 years after the Tohoku-Oki earthquake.


Sign in / Sign up

Export Citation Format

Share Document