scholarly journals Genome-Wide Transcriptomic Analysis of N-Caproic Acid Production in Ruminococcaceae Bacterium CPB6 with Lactate Supplementation

2020 ◽  
Author(s):  
YONG TAO ◽  
Shaowen Lu ◽  
Yi Wang ◽  
Cuicui Wei

Abstract Background: n-Caproic acid (CA) is gaining increased attention due to its high value as a chemical feedstock. Our recent studies have demonstrated that lactate can be an attractive energy substrate for the production of CA. However, little is known about the potential molecular mechanism for CA production triggered by the supplementation of exogenous lactate at the gene transcriptional level. Results: 5% lactate was supplemented into the fermentation with Ruminococcaceae bacterium CPB6 for CA production. Results showed that lactate supplementation led to earlier CA production and higher final CA titer and productivity. Transcriptional analysis was carried out using RNA-Seq for the culture with lactate supplementation compared to the control (without lactate supplementation). It has been indicated that there were only 34 differentially expressed genes (DEGs) between the two groups at the exponential phase, of which 15 were upregulated, and 19 were downregulated by more than two-fold. A total of 245 DEGs were identified between the two groups at the stationary phase, of which 123 were upregulated and 122 were downregulated. These DEGs cover crucial functional categories. Specifically, 5 genes responsible for the reverse β-oxidation pathway, 11 genes encoding ATP-binding cassette (ABC) transporters, 6 genes encoding substrate-binding protein (SBP) and 4 genes encoding phosphotransferase system (PTS) transporters were strikingly upregulated in response to the addition of lactate. These genes would be candidates for future studies aiming at understanding the regulatory mechanism of lactate conversion into CA, as well as for the improvement of CA production in strain CPB6. Conclusion: This study suggested that lactate supplementation can promote CA production by altering the expression patterns of genes involved in the essential metabolic pathways, such as central pyruvate metabolism, the reverse β-oxidation pathway, ABC and PTS transports. The findings presented herein reveal unique insights into the biomolecular effects of lactate on CA production at the gene transcriptional level.

2020 ◽  
Author(s):  
Yong Tao ◽  
Shaowen Lu ◽  
Yi Wang ◽  
Cuicui Wei ◽  
Hong Jin ◽  
...  

Abstract Background n-Caproic acid (CA) is gaining increased attention due to its high value as a chemical feedstock. Ruminococcaceae bacterium strain CPB6 is an anaerobic mesophilic bacterium that is highly prolific in its ability to perform chain elongation of lactate to CA. However, little is known about the genome-wide transcriptional analysis of strain CPB6 for CA production triggered by the supplementation of exogenous lactate. Results In this study, 0.5% lactate was supplemented into the fermentation with Ruminococcaceae bacterium CPB6 for CA production. Compared to the control (without lactate supplementation), lactate supplementation led to earlier CA production and higher final CA titer and productivity. Transcriptional analysis was carried out using RNA-Seq for the culture with and without lactate supplementation (two groups) at growth and stationary phases, respectively. It has been indicated that 295 genes whose changes in expression patterns were substrate and/or growth dependent. These genes cover crucial functional categories. Specifically, 5 genes responsible for the reverse β-oxidation pathway, 11 genes encoding ATP-binding cassette (ABC) transporters, 6 genes encoding substrate-binding protein (SBP) and 4 genes encoding phosphotransferase system (PTS) transporters were strikingly upregulated in response to the addition of lactate. These genes would be candidates for future studies aiming at understanding the regulatory mechanism of lactate conversion into CA, as well as for the improvement of CA production in strain CPB6. Conclusions This study suggested that lactate supplementation can promote CA production by altering the expression patterns of genes involved in the essential metabolic pathways, such as central pyruvate metabolism, the reverse β-oxidation pathway, ABC and PTS transports. The findings presented herein reveal unique insights into the biomolecular effects of lactate on CA production at the gene transcriptional level.


Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Chenghao Zhang ◽  
Wenqi Dong ◽  
Zong-an Huang ◽  
MyeongCheoul Cho ◽  
Qingcang Yu ◽  
...  

Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sha Yang ◽  
Jianguo Wang ◽  
Zhaohui Tang ◽  
Feng Guo ◽  
Ye Zhang ◽  
...  

Abstract Calcium is not only a nutrient necessary for plant growth but also a ubiquitous central element of different signaling pathways. Ca2+ deficiency in soil may cause embryo abortion, which can eventually lead to abnormal development of peanut pods during the harvest season. To further study the mechanisms by which Ca2+ affects the shells and kernels of peanuts, transcriptome sequencing was used to explore the genes differentially expressed in shells and kernels during the early stage of peanut pod development between Ca2+ sufficient and deficient treatments. In this study, 38,894 expressed genes were detected. RNA-seq based gene expression profiling showed a large number of genes at the transcriptional level that changed significantly in shells and kernels between the Ca2+ sufficient and deficient treatments, respectively. Genes encoding key proteins involved in Ca2+ signal transduction, hormones, development, ion transport, and nutrition absorption changed significantly. Meanwhile, in the early stage of pod development, calcium first promoted nutrient absorption and development of shells, which has less effect on the formation of seed kernels. These results provide useful information for understanding the relationship between Ca2+ absorption and pod development.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2005 ◽  
Vol 51 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fredrik Karlsson ◽  
Ann-Christin Malmborg-Hager ◽  
Ann-Sofie Albrekt ◽  
Carl A.K Borrebaeck

To identify Escherichia coli genes potentially regulated by filamentous phage infection, we used oligonucleotide microarrays. Genome-wide comparison of phage M13-infected and uninfected E. coli, 2 and 20 min after infection, was performed. The analysis revealed altered transcription levels of 12 E. coli genes in response to phage infection, and the observed regulation of phage genes correlated with the known in vivo pattern of M13 mRNA species. Ten of the 12 host genes affected could be grouped into 3 different categories based on cellular function, suggesting a coordinated response. The significantly upregulated genes encode proteins involved in reactions of the energy-generating phosphotransferase system and transcription processing, which could be related to phage transcription. No genes belonging to any known E. coli stress response pathways were scored as upregulated. Furthermore, phage infection led to significant downregulation of transcripts of the bacterial genes gadA, gadB, hdeA, gadE, slp, and crl. These downregulated genes are normally part of the host stress response mechanisms that protect the bacterium during conditions of acid stress and stationary phase transition. The phage-infected cells demonstrated impaired function of the oxidative and the glutamate-dependent acid resistance systems. Thus, global transcriptional analysis and functional analysis revealed previously unknown host responses to filamentous phage infection.Key words: filamentous phage infection, global transcriptional analysis, AR, Escherichia coli.


2021 ◽  
Vol 9 (8) ◽  
pp. 1626
Author(s):  
Anu Yadav ◽  
Laurens Maertens ◽  
Tim Meese ◽  
Filip Van Nieuwerburgh ◽  
Mohamed Mysara ◽  
...  

Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy.h−1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.


2001 ◽  
Vol 183 (24) ◽  
pp. 7329-7340 ◽  
Author(s):  
Robert Caldwell ◽  
Ron Sapolsky ◽  
Walter Weyler ◽  
Randal R. Maile ◽  
Stuart C. Causey ◽  
...  

ABSTRACT The availability of the complete sequence of the Bacillus subtilis chromosome (F. Kunst et al., Nature 390:249–256, 1997) makes possible the construction of genome-wide DNA arrays and the study of this organism on a global scale. Because we have a long-standing interest in the effects of scoC on late-stage developmental phenomena as they relate toaprE expression, we studied the genome-wide effects of ascoC null mutant with the goal of furthering the understanding of the role of scoC in growth and developmental processes. In the present work we compared the expression patterns of isogenic B. subtilis strains, one of which carries a null mutation in the scoC locus (scoC4). The results obtained indicate thatscoC regulates, either directly or indirectly, the expression of at least 560 genes in the B. subtilisgenome. ScoC appeared to repress as well as activate gene expression. Changes in expression were observed in genes encoding transport and binding proteins, those involved in amino acid, carbohydrate, and nucleotide and/or nucleoside metabolism, and those associated with motility, sporulation, and adaptation to atypical conditions. Changes in gene expression were also observed for transcriptional regulators, along with sigma factors, regulatory phosphatases and kinases, and members of sensor regulator systems. In this report, we discuss some of the phenotypes associated with the scoCmutant in light of the transcriptome changes observed.


2020 ◽  
Author(s):  
Hiroto Yamamoto ◽  
Yutaro Uchida ◽  
Tomoki Chiba ◽  
Ryota Kurimoto ◽  
Takahide Matsushima ◽  
...  

AbstractBackgroundsSevoflurane is a most frequently used volatile anaesthetics, but its molecular mechanisms of action remain unclear. We hypothesized that specific genes play regulatory roles in whole brain exposed to sevoflurane. Thus, we aimed to evaluate the effects of sevoflurane inhalation and identify potential regulatory genes by RNA-seq analysis.MethodsEight-week old mice were exposed to sevoflurane. RNA from four medial prefrontal cortex, striatum, hypothalamus, and hippocampus were analysed using RNA-seq. Differently expressed genes were extracted. Their gene ontology terms and the transcriptome array data of the cerebral cortex of sleeping mice were analysed using Metascape, and the gene expression patterns were compared. Finally, the activities of transcription factors were evaluated using a weighted parametric gene set analysis (wPGSA). JASPAR was used to confirm the existence of binding motifs in the upstream sequences of the differently expressed genes.ResultsThe gene ontology term enrichment analysis result suggests that sevoflurane inhalation upregulated angiogenesis and downregulated neural differentiation in the whole brain. The comparison with the brains of sleeping mice showed that the gene expression changes were specific to anaesthetized mice. Sevoflurane induced Klf4 upregulation in the whole brain. The transcriptional analysis result suggests that KLF4 is a potential transcriptional regulator of angiogenesis and neural development.ConclusionsKlf4 was upregulated by sevoflurane inhalation in whole brain. KLF4 might promote angiogenesis and cause the appearance of undifferentiated neural cells by transcriptional regulation. The roles of KLF4 might be key to elucidating the mechanisms of sevoflurane induced functional modification in the brain.


2021 ◽  
Vol 22 (21) ◽  
pp. 11314
Author(s):  
Hailiang Zhao ◽  
Yao Qin ◽  
Ziyi Xiao ◽  
Kun Liang ◽  
Dianming Gong ◽  
...  

RNA polymerase III (RNAPIII) contains 17 subunits forming 4 functional domains that control the different stages of RNAPIII transcription and are dedicated to the synthesis of small RNAs such as 5S rRNA and tRNAs. Here, we identified 23 genes encoding these subunits in Arabidopsis (Arabidopsis thaliana) and further analyzed 5 subunits (NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2) encoded by 6 genes with different expression patterns and belonging to different sub-complexes. The knockdown of these genes repressed the expression of 5S rRNA and tRNAs, causing seed developmental arrest at different stages. Among these knockdown mutants, RNA-seq analysis revealed 821 common differentially expressed genes (DEGs), significantly enriched in response to stress, abscisic acid, cytokinins, and the jasmonic acid signaling pathway. Weighted gene co-expression network analysis (WGCNA) revealed several hub genes involved in embryo development, carbohydrate metabolic and lipid metabolic processes. We identified numerous unique DEGs between the mutants belonging to pathways, including cell proliferation, ribosome biogenesis, cell death, and tRNA metabolic processes. Thus, NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2 control seed development in Arabidopsis by influencing RNAPIII activity and, thus, hormone signaling. Reduced expression of these subunit genes causes an insufficient accumulation of the total RNAPIII, leading to the phenotypes observed following the genetic knockdown of these subunits.


Sign in / Sign up

Export Citation Format

Share Document