scholarly journals Negative assortative mating and maintenance of shell colour polymorphism in Littorina (Neritrema) species

Author(s):  
Juan Gefaell ◽  
Juan Galindo ◽  
Christian Malvido ◽  
Victor Nuñez ◽  
Daniel Estévez ◽  
...  

Abstract Colour polymorphism is a widespread phenomenon in natural populations of several species. In particular, it is especially common on marine gastropod species from the genus Littorina. Recently, it has been argued that intrapopulation shell colour polymorphism in Littorina fabalis could be caused by negative frequency-dependent sexual selection via a mechanism of mate choice (indirectly estimated via negative assortative mating). Here we try to determine the existence of negative assortative mating in three species of the subgenus Neritrema (L. fabalis, L. obtusata, L. saxatilis) that share a similar shell colour polymorphism, in order to ascertain if this mechanism could represent an ancestral character in this subgenus that could be contributing to the maintenance of the colour polymorphism in each species. Here, we collected or reanalysed from previous studies a sample of mating pairs of the three species from seven locations from NW Spain and NE Russia and estimated assortative mating using the IPSI index. Our results show that all species and populations show a systematic tendency towards negative assortative mating when shell colour is grouped in the broad categories: ‘light’ and ‘dark’. Although, a more detailed analysis of each colour individually suggests that shell colour may not be the main target of assortative mating, but perhaps physically linked to another trait or through pleiotropic effects. This hypothesis opens interesting new lines of research in Littorina snails.

2012 ◽  
Vol 58 (3) ◽  
pp. 475-483 ◽  
Author(s):  
Michael J. Pauers ◽  
Jeffrey S. Mckinnon

Abstract Sexual selection is widely viewed as playing a central role in haplochromine cichlid speciation. Hypothetically, once divergent mate preferences evolve among populations of these fishes, reproductive isolation follows and the populations begin to behave as different species. Various studies have examined patterns of assortative mating among species and sometimes populations, but few have examined variation in directional preferences, especially among populations of the same species. We investigated mate choice behavior in two populations of Labeotropheus fuelleborni, a Lake Malawi endemic. We test whether mating preferences between populations are based on the same traits and in the same direction as preferences within populations. We examine the potential contributions of two classes of trait, color patterns and behaviors, to reproductive isolation. When females chose between either two males of their own population, or two from another, female preferences were generally similar (for the female population) across the two contexts. Mate choice patterns differed between (female) populations for a measure of color, but only modestly for male behavior. In a separate experiment we simultaneously offered females a male of their own population and a male from a different population. In these trials, females consistently preferred males from their own population, which were also the males that displayed more frequently than their opponents, but not necessarily those with color traits suggested to be most attractive in the previous experiment. Thus directional preferences for chroma and related aspects of color may be important when females are presented with males of otherwise similar phenotypes, but may play little role in mediating assortative mating among populations with substantially different color patterns. A preference for male behavior could play some role in speciation if males preferentially court same-population females, as we have observed for the populations studied herein.


2011 ◽  
Vol 279 (1731) ◽  
pp. 1085-1092 ◽  
Author(s):  
Oscar Puebla ◽  
Eldredge Bermingham ◽  
Frédéric Guichard

Whether sexual selection alone can drive the evolution of assortative mating in the presence of gene flow is a long-standing question in evolutionary biology. Here, we report a role for pairing dynamics of individuals when mate choice is mutual, which is sufficient for the evolution of assortative mating by sexual selection alone in the presence of gene flow. Through behavioural observation, individual-based simulation and population genetic analysis, we evaluate the pairing dynamics of coral reef fish in the genus Hypoplectrus (Serranidae), and the role these dynamics can play for the evolution of assortative mating. When mate choice is mutual and the stability of mating pairs is critical for reproductive success, the evolution of assortative mating in the presence of gene flow is not only possible, but is also a robust evolutionary outcome.


2016 ◽  
Vol 283 (1830) ◽  
pp. 20160172 ◽  
Author(s):  
O. M. Selz ◽  
R. Thommen ◽  
M. E. R. Pierotti ◽  
J. M. Anaya-Rojas ◽  
O. Seehausen

Female mating preferences can influence both intraspecific sexual selection and interspecific reproductive isolation, and have therefore been proposed to play a central role in speciation. Here, we investigate experimentally in the African cichlid fish Pundamilia nyererei if differences in male coloration between three para-allopatric populations (i.e. island populations with gene flow) of P. nyererei are predicted by differences in sexual selection by female mate choice between populations . Second, we investigate if female mating preferences are based on the same components of male coloration and go in the same direction when females choose among males of their own population, their own and other conspecific populations and a closely related para-allopatric sister-species, P. igneopinnis . Mate-choice experiments revealed that females of the three populations mated species-assortatively, that populations varied in their extent of population-assortative mating and that females chose among males of their own population based on different male colours. Females of different populations exerted directional intrapopulation sexual selection on different male colours, and these differences corresponded in two of the populations to the observed differences in male coloration between the populations. Our results suggest that differences in male coloration between populations of P. nyererei can be explained by divergent sexual selection and that population-assortative mating may directly result from intrapopulation sexual selection.


2019 ◽  
Vol 113 (1) ◽  
pp. 40-49
Author(s):  
Christopher S Angell ◽  
Sharon Curtis ◽  
Anaïs Ryckenbusch ◽  
Howard D Rundle

Abstract The epicuticular compounds (ECs) of insects serve both to waterproof the cuticle and, in many taxa, as pheromones that are important for various social interactions, including mate choice within populations. However, ECs have not been individually identified in many species and most studies of their role in mate choice have been performed in a laboratory setting. Here we newly identify and quantify the ECs of the antler fly, Protopiophila litigata Bonduriansky, and use a cross-sectional selection analysis to quantify their association with male mating success in the wild across two years (2013 and 2017). The ECs of antler flies include straight-chain and methylated alkanes, alkenes, and a family of branched wax esters. We find all ECs to be shared between males and females but also demonstrate sexual dimorphism in the abundance of several. Male EC relative abundances were significantly associated with mating success in both years, although the multivariate direction of selection differed significantly between the years. Surprisingly, only two of the 18 compounds (or groups of compounds) we identified were similarly associated with mating success across the sampling years. In 2017, we further partitioned sexual selection into intra- and intersexual components, revealing selection on ECs to be significant via female choice but not male–male competition. Our study is one of few to investigate the potential role of ECs in mating success in the wild and adds to a growing body of evidence demonstrating significant temporal variability in selection in natural populations.


2020 ◽  
Author(s):  
Christopher Angell ◽  
Sharon Curtis ◽  
Anaïs Ryckenbusch ◽  
Howard Rundle

The epicuticular compounds (ECs) of insects serve both to waterproof the cuticle and, in many taxa, as pheromones that are important for various social interactions including mate choice within populations. However, ECs have not been individually identified in many species and most studies of their role in mate choice have been performed in a laboratory setting. Here we newly identify and quantify the ECs of the antler fly, Protopiophila litigata Bonduriansky, and use a cross-sectional selection analysis to quantify their association with male mating success in the wild across two years (2013 and 2017). The ECs of antler flies include straight-chain and methylated alkanes, alkenes, and a family of branched wax esters. We find all ECs to be shared between males and females but also demonstrate sexual dimorphism in the abundance of several. Male EC relative abundances were significantly associated with mating success in both years, although the multivariate direction of selection differed significantly between the years. Surprisingly, only two of the 18 compounds (or groups of compounds) we identified were similarly associated with mating success across the sampling years. In 2017, we further partitioned sexual selection into intra- and intersexual components, revealing selection on ECs to be significant via female choice but not male-male competition. Our study is one of few to investigate the potential role of ECs in mating success in the wild and adds to a growing body of evidence demonstrating significant temporal variability in selection in natural populations.


2018 ◽  
Author(s):  
Antonio Carvajal-Rodriguez

AbstractNon-random mating has a significant impact on the evolution of organisms. Here, I developed a modelling framework for discrete traits (with any number of phenotypes) to explore different models connecting the non-random mating causes (intra sexual competition and/or mate choice) and their consequences (sexual selection and/or assortative mating).I derived the formulas for the maximum likelihood estimates of each model and used information criteria for performing multimodel inference. Simulation results showed a good performance of both model selection and parameter estimation. The methodology was applied to data from Galician Littorina saxatilis ecotypes, to show that the mating pattern is better described by models with two parameters that involve both mate choice and intrasexual competition, generating positive assortative mating plus female sexual selection.As far as I know, this is the first standardized methodology for model selection and multimodel inference of mating parameters for discrete traits. The advantages of this framework include the ability of setting up models from which the parameters connect causes, as intrasexual competition and mate choice, with their outcome in the form of data patterns of sexual selection and assortative mating. For some models, the parameters may have a double effect i.e. they cause both kind of patterns, while for others models there are separated parameters for one kind of pattern or another.The full methodology was implemented in a software called InfoMating (available at http://acraaj.webs6.uvigo.es/InfoMating/Infomating.htm).


2002 ◽  
Vol 50 (2) ◽  
pp. 125 ◽  
Author(s):  
S. Fox ◽  
C. N. Johnson ◽  
R. Brooks ◽  
M. J. Lewis

Mate choice can result in both assortative mating and directional sexual selection, but few studies have addressed both processes simultaneously. Here we test several hypotheses regarding the possible role of female mate choice in maintaining the face-colour polymorphism of, and affecting directional sexual selection in, the Gouldian finch. These endangered Australian finches are highly sexually dimorphic and are genetically polymorphic for face colour: there are black-, red- and gold-faced individuals. First we showed that Gouldian finches tend to pair positive-assortatively by face colour morph in aviaries. In a laboratory experiment, we tested whether female mate choice is assortative by face colour. Overall, females neither preferred males of the same or of different face colour morphs as themselves. We found weak evidence for positive assortative female choice at one of the two loci involved in determining face colour. Next, we tested whether females showed frequency-dependent mate choice, and found that they preferred neither rare nor common male morphs. In order to test for directional sexual selection on males by female mate choice, we examined the correlations between male morphological traits and attractiveness to females. We found that tail pin length and bill size are correlated with male attractiveness, and may be under sexual selection. Thus, whilst female mate choice may be an important process in determining the evolution of male morphology, and potentially sexual dimorphism, it does not appear to be the primary force behind the assortative mating pattern among the face colour morphs.


2020 ◽  
Vol 7 (6) ◽  
pp. 192136 ◽  
Author(s):  
Mats Olsson ◽  
Nicholas J. Geraghty ◽  
Erik Wapstra ◽  
Mark Wilson

Telomeres are repeat sequences of non-coding DNA-protein molecules that cap or intersperse metazoan chromosomes. Interest in telomeres has increased exponentially in recent years, to now include their ongoing dynamics and evolution within natural populations where individuals vary in telomere attributes. Phylogenetic analyses show profound differences in telomere length across non-model taxa. However, telomeres may also differ in length within individuals and between tissues. The latter becomes a potential source of error when researchers use different tissues for extracting DNA for telomere analysis and scientific inference. A commonly used tissue type for assessing telomere length is blood, a tissue that itself varies in terms of nuclear content among taxa, in particular to what degree their thrombocytes and red blood cells (RBCs) contain nuclei or not. Specifically, when RBCs lack nuclei, leucocytes become the main source of telomeric DNA. RBCs and leucocytes differ in lifespan and how long they have been exposed to ‘senescence' and erosion effects. We report on a study in which cells in whole blood from individual Australian painted dragon lizards ( Ctenophorus pictus ) were identified using flow cytometry and their telomere length simultaneously measured. Lymphocyte telomeres were on average 270% longer than RBC telomeres, and in azurophils (a reptilian monocyte), telomeres were more than 388% longer than those in RBCs. If this variation in telomere length among different blood cell types is a widespread phenomenon, and DNA for comparative telomere analyses are sourced from whole blood, evolutionary inference of telomere traits among taxa may be seriously complicated by the blood cell type comprising the main source of DNA.


Sign in / Sign up

Export Citation Format

Share Document