Microstructure and mechanical properties of 6061-T6 aluminum alloy and Q235 steel via probeless friction stir extrusion joining

Author(s):  
Peng Zhang ◽  
Shengdun Zhao ◽  
Chuanwei Zhang ◽  
Zheng Chen ◽  
Jiaying Zhang ◽  
...  

Abstract Aluminum alloy and steel composite structures are increasingly and widely used in the automotive industry and other fields owing to their advantages of light weight and high comprehensive performance. The high-quality joining of aluminum alloy and steel has become the research focus in China and overseas. The current study proposes a probeless friction stir extrusion joining (P-FSEJ) process to avoid intermetallic compounds, reduce wear of tools, and obtain a spot joint without keyhole defects. Strong mechanical interlock is formed after that the plasticized aluminum alloy (AA) 6061-T6 is extruded into the prefabricated threaded hole of a Q235 steel plate in the P-FSEJ process. Three distinct zones in the typical symmetrical “basin-shaped” P-FSEJed joint are observed. In addition to the rotation speed, the diameter of the threaded hole is also specifically used to study the influence on the mechanical properties of the joint. When the rotation speed is 1200 rpm, the maximum tensile-shear loads of the M6 and M7 threaded hole joints are 2882.93 N and 3344.74 N, respectively, while the M8 threaded hole joint is 4139.58 N at rotation speed of 1000 rpm. Two typical fracture failure modes of the P-FSEJed joints, namely, rivet shear and rivet pullout-shear fractures, are obtained under tensile-shear loading. Lastly, the P-FSEJed joints with mode “P” fracture failure generally have high strength and energy absorption capability.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Huijie Liu ◽  
Yunqiang Zhao ◽  
Xingye Su ◽  
Lilong Yu ◽  
Juncai Hou

2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ), thermal mechanically affected zone (TMAZ), and heat affected zone (HAZ). The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.


2017 ◽  
Vol 68 (3) ◽  
pp. 459-463
Author(s):  
Daniela Monica Iordache ◽  
Marian Catalin Ducu ◽  
Eduard Laurentiu Nitu ◽  
Doina Iacomi ◽  
Adriana Gabriela Plaiasu ◽  
...  

Welding dissimilar materials aluminum and copper by FSW are of great interest because Al and Cu are two most common engineering materials widely used in many industries. The paper analyzes the microstructure and mechanical properties obtained by butt of dissimilar material Cu - Al alloys (EN-AW-5754) by FSW. The joining by FSW process of the two samples (5 mm thickness) was performed with the pin of the tool tangential to copper plate. The values of the process parameters were the same in both cases: the rotation speed of the pin 1200 [rpm] and feed rate 60 [mm / min]. The microstructure was examined in 6 zones covering the whole thickness of the plates, Vickers microhardness was measured along a perpendicular line to the nugget and residual stresses.


2018 ◽  
Vol 7 (4.1) ◽  
pp. 3037
Author(s):  
Isam Tareq Abdullah ◽  
Zaman Khalil Ibrahim ◽  
Ahmed Ibrahim Razooqi

Friction stir spot welding-FSSW has been suggested as effectual process to welding difficult materials such as dissimilar materials and thin sheet of metal alloys. In this study, using dissimilar materials were welded carbon steel-1006 on upper plate and aluminum alloy AA2024-T3 on lower plate. Macrostructure, micro-structural analysis and mechanical properties of the joints are done. The effect of penetration depth, dwell time and spindle speed on tensile shear load are investigated with invariable of other parameter during welding process. The maximum tensile shear load (3.31KN) was occurred when using 0.4mm of penetration depth, 10 sec of dwell time and 1400 rpm of spindle speed. Also, two type of failure shape was observed interfacial fracture of carbon steel sheet and pull-out fracture of AA2024-T3 sheet.


2012 ◽  
Vol 710 ◽  
pp. 253-257 ◽  
Author(s):  
Shivanna Pradeep ◽  
Sumit Kumar Sharma ◽  
Vivek Pancholi

In the present investigation friction stir processing (FSP) is carried out by single and multipass FSP on a 5086 aluminum alloy to modify microstructure and mechanical properties. The processing is carried out at constant rotation speed of 1025 rpm and at a traverse speed of 30 mm/min. Inhomogeneous microstructural distribution was observed across the processed zone. EBSD analysis has been done to evaluate the microstructure. Overlapping passes is showing same grain size as in single pass FSPed material. Material processed using multi pass FSP at 30 mm/min is showing higher mechanical strength as compared to base material. The bulk material produced due to multipass seems to be good for superplastic forming applications.


2021 ◽  
Author(s):  
Tauqir NASIR ◽  
Omer KALAF ◽  
Mohammed ASMAEL

In the current study, the effects of dwell time and rotation speed on the mechanical properties and microstructure of friction stir spot welded joints of dissimilar aluminum sheet alloys were investigated. Aluminum AA5754 and AA7075-T651 alloys were selected as the work piece. The joint quality, microstructural evolution and mechanical behavior of the welded regions were considerably affected by the welding parameters. The results obtained that rotation speed and dwell time play an important role on welding quality of aluminum sheet. The microstructure images showed the dwell time and rotation speed has great effects on pin penetration and hook deformation. Maximum tensile shear load 806.3 N was produced at 1000 rpm and 2 s dwell time, while the tensile shear load reduced around 25 % with longer dwell time 5 s and high rotation speed 1400 rpm. Moreover, the welding joint microhardness was improved by the decrease of dwell time and increase of rotation speed.


Sign in / Sign up

Export Citation Format

Share Document