scholarly journals Multifractal analysis of ZnO thin films doped with Mg deposited by sol-gel spin coating on a glass substrate

Author(s):  
Ştefan Ţălu ◽  
Samah Boudour ◽  
Idris Bouchama ◽  
Bandar Astinchap ◽  
Hamta Ghanbaripour

Abstract A multifractal analysis has been performed on the three-dimensional surface microtexture of the ZnO thin films doped with Mg deposited by sol-gel spin coating on glass substrates. The effects of Mg doping element with amounts of 0, 2, 4, and 5 % on structural and morphological properties of the coated films were investigated. From the X-ray diffraction pattern analysis, it was found that the obtained thin films had a polycrystalline hexagonal wurtzite structure with preferential c-axis orientation and increased grain size with increasing the Mg doping. From scanning electron microscopy (SEM) analysis, it can be concluded that the surface of coated thin films had dense and uniformly distributed grains of nanoscale without any cracks over all surfaces of coated firms. From atomic force microscope (AFM) analysis, it can be also concluded that the surface of coated thin films had a dense columnar grain growth uniformly distributed over the entire 1 µm ⋅ 1 µm - scanned area. The surface microtexture was characterized in terms of multifractal analysis.

2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Mohammad Khaledi Sardashti

Glass plate-supported nanostructure ZnO thin films were deposited by sol-gel spin coating. Films were preheated at275∘Cfor 10 minutes and annealed at 350, 450, and550∘Cfor 80 minutes. The ZnO thin films were transparent ca 80–90% in visible range and revealed that absorption edges at about 370 nm. Thec-axis orientation improves and the grain size increases which was indicated by an increase in intensity of the (002) peak at34.4∘in XRD corresponding to the hexagonal ZnO crystal. The photocatalytic degradation of X6G an anionic monoazo dye, in aqueous solutions, was investigated and the effects of some operational parameters such as the number of layer and reusability of ZnO nanostructure thin film were examined. The results showed that the five-layer coated glass surfaces have a very high photocatalytic performance.


Author(s):  
Ştefan Ţălu ◽  
Samah Boudour ◽  
Idris Bouchama ◽  
Bandar Astinchap ◽  
Hamta Ghanbaripour ◽  
...  

2014 ◽  
Vol 970 ◽  
pp. 120-123 ◽  
Author(s):  
Peh Ly Tat ◽  
Karim bin Deraman ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Rosli Hussin ◽  
Zuhairi Ibrahim

Undoped nanocrystalline ZnO thin films were deposited onto the glass substrates via the low cost sol-gel dip coating method. The as-grown ZnO films were annealed at the temperatures ranging from 400 °C to 550 °C. The X-ray diffraction (XRD) pattern revealed that the annealed ZnO films were polycrystalline with hexagonal wurtzite structure and majority preferentially grow along (002) c-axis orientation. Atomic force microscopy (AFM) micrographs showed the improvement of RMS roughness and grain size as annealing temperature increased. The ZnO films that annealed at 500 oC exhibited the lowest resistivity value.


2012 ◽  
Vol 19 (05) ◽  
pp. 1250055 ◽  
Author(s):  
M. SALEEM ◽  
L. FANG ◽  
Q. L. HUANG ◽  
D. C. LI ◽  
F. WU ◽  
...  

Highly transparent ZnO thin films were deposited on glass substrates by using a simple and inexpensive multi-step sol–gel spin coating process. This research investigated the effects of annealing temperature in the range from 350–600°C on the microstructure, surface morphology and optical properties of thin films by using XRD, SEM and transmittance spectra. The XRD results showed that the c-axis orientation of ZnO thin films was improved with the increase of annealing temperature. The grain size increases from 16.6–19.7 nm with the increase in temperature. The transmittance spectra indicated that the transmittance and direct optical band gap Eg of the films showed a decreased trend with annealing temperature. It is found that the tensile stress exist in the films, which decreases with the increase in annealing temperature up to 500°C, on further increasing the annealing temperature up to 600°C, the stress in the film changes from tensile to compressive nature.


2016 ◽  
Vol 675-676 ◽  
pp. 241-244 ◽  
Author(s):  
Tanattha Rattana ◽  
Sumetha Suwanboon ◽  
Chittra Kedkaew

Ni-doped ZnO thin films were prepared on glass slide substrates by a sol-gel dip coating method with different Ni doping concentrations (0-33 mol%). The effect of Ni doping concentration on structural, surface morphology and optical properties of the thin films was characterized by XRD, FESEM and UV-Vis spectrophotometer. The XRD results indicated that pure ZnO thin film exhibited a hexagonal wurtzite structure. Ni (OH)2 phase were observed at a high Ni doping concentration. The FESEM images showed that the surface morphology and surface roughness were sensitive to the Ni doping concentration. The optical transmission measurements were observed that the transmittance decreased with increasing the Ni doping concentration.


Sign in / Sign up

Export Citation Format

Share Document