Multifractal analysis of ZnO thin films doped with Mg deposited by sol-gel spin coating on a glass substrate
Abstract A multifractal analysis has been performed on the three-dimensional surface microtexture of the ZnO thin films doped with Mg deposited by sol-gel spin coating on glass substrates. The effects of Mg doping element with amounts of 0, 2, 4, and 5 % on structural and morphological properties of the coated films were investigated. From the X-ray diffraction pattern analysis, it was found that the obtained thin films had a polycrystalline hexagonal wurtzite structure with preferential c-axis orientation and increased grain size with increasing the Mg doping. From scanning electron microscopy (SEM) analysis, it can be concluded that the surface of coated thin films had dense and uniformly distributed grains of nanoscale without any cracks over all surfaces of coated firms. From atomic force microscope (AFM) analysis, it can be also concluded that the surface of coated thin films had a dense columnar grain growth uniformly distributed over the entire 1 µm ⋅ 1 µm - scanned area. The surface microtexture was characterized in terms of multifractal analysis.