Analysis of Radar Technology Identification Model for Potential Geologic Hazard based on Convolutional Neural Network and Big Data

Author(s):  
Feng He ◽  
Hongjiang Liu ◽  
Chunxue Liu ◽  
Guangjing Bao

Abstract To ensure the proper adoption of new technologies in identifying the potential geologic hazard on tourist routes, convolutional neural network (CNN) technology is applied in the radar image geologic hazard information extraction. A scientific and practical geologic hazard radar identification model is built, which is based on CNN’s image identification and big data algorithm calculation, and it can effectively improve the geologic hazard identification accuracy. By designing experiments, the geologic hazard radar image data are verified, and the practicality of radar image intelligent Identification under CNN and big data technology is also verified. The results show that the images of different resolution sizes all play a significant role in identification of geologic hazard performed by CNN. However, there are differences in the performance of different CNN models. With the continuous increase of training samples, the identification accuracy of various network models is also improved. By means of radar image test, the identification capability of CNN model is the best, the highest precision is 93.61%, and the geologic hazard recall rate is 98.27%. Apriori algorithm is introduced into data processing, and the running speed and efficiency of identification models are improved, with favorable identification effect in variable data sets. This research can provide theoretical ideas and practical value for the development of potential geologic hazard identification on tourist routes.

2019 ◽  
Vol 8 (5) ◽  
pp. 208 ◽  
Author(s):  
Rui Chen ◽  
Mingjian Chen ◽  
Wanli Li ◽  
Jianguang Wang ◽  
Xiang Yao

Massive trajectory data generated by ubiquitous position acquisition technology are valuable for knowledge discovery. The study of trajectory mining that converts knowledge into decision support becomes appealing. Mobility modes awareness is one of the most important aspects of trajectory mining. It contributes to land use planning, intelligent transportation, anomaly events prevention, etc. To achieve better comprehension of mobility modes, we propose a method to integrate the issues of mobility modes discovery and mobility modes identification together. Firstly, route patterns of trajectories were mined based on unsupervised origin and destination (OD) points clustering. After the combination of route patterns and travel activity information, different mobility modes existing in history trajectories were discovered. Then a convolutional neural network (CNN)-based method was proposed to identify the mobility modes of newly emerging trajectories. The labeled history trajectory data were utilized to train the identification model. Moreover, in this approach, we introduced a mobility-based trajectory structure as the input of the identification model. This method was evaluated with a real-world maritime trajectory dataset. The experiment results indicated the excellence of this method. The mobility modes discovered by our method were clearly distinguishable from each other and the identification accuracy was higher compared with other techniques.


2021 ◽  
Vol 16 ◽  
pp. 155892502110050
Author(s):  
Junli Luo ◽  
Kai Lu ◽  
Yueqi Zhong ◽  
Boping Zhang ◽  
Huizhu Lv

Wool fiber and cashmere fiber are similar in physical and morphological characteristics. Thus, the identification of these two fibers has always been a challenging proposition. This study identifies five kinds of cashmere and wool fibers using a convolutional neural network model. To this end, image preprocessing was first performed. Then, following the VGGNet model, a convolutional neural network with 13 weight layers was established. A dataset with 50,000 fiber images was prepared for training and testing this newly established model. In the classification layer of the model, softmax regression was used to calculate the probability value of the input fiber image for each category, and the category with the highest probability value was selected as the prediction category of the fiber. In this experiment, the total identification accuracy of samples in the test set is close to 93%. Among these five fibers, Mongolian brown cashmere has the highest identification accuracy, reaching 99.7%. The identification accuracy of Chinese white cashmere is the lowest at 86.4%. Experimental results show that our model is an effective approach to the identification of multi-classification fiber.


Author(s):  
Benhui Xia ◽  
Dezhi Han ◽  
Ximing Yin ◽  
Gao Na

To secure cloud computing and outsourced data while meeting the requirements of automation, many intrusion detection schemes based on deep learn ing are proposed. Though the detection rate of many network intrusion detection solutions can be quite high nowadays, their identification accuracy on imbalanced abnormal network traffic still remains low. Therefore, this paper proposes a ResNet &Inception-based convolutional neural network (RICNN) model to abnormal traffic classification. RICNN can learn more traffic features through the Inception unit, and the degradation problem of the network is eliminated through the direct map ping unit of ResNet, thus the improvement of the model?s generalization ability can be achievable. In addition, to simplify the network, an improved version of RICNN, which makes it possible to reduce the number of parameters that need to be learnt without degrading identification accuracy, is also proposed in this paper. The experimental results on the dataset CICIDS2017 show that RICNN not only achieves an overall accuracy of 99.386% but also has a high detection rate across different categories, especially for small samples. The comparison experiments show that the recognition rate of RICNN outperforms a variety of CNN models and RNN models, and the best detection accuracy can be achieved.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Leilei Kong ◽  
Zhongyuan Han ◽  
Yong Han ◽  
Haoliang Qi

Paraphrase identification is central to many natural language applications. Based on the insight that a successful paraphrase identification model needs to adequately capture the semantics of the language objects as well as their interactions, we present a deep paraphrase identification model interacting semantics with syntax (DPIM-ISS) for paraphrase identification. DPIM-ISS introduces the linguistic features manifested in syntactic features to produce more explicit structures and encodes the semantic representation of sentence on different syntactic structures by means of interacting semantics with syntax. Then, DPIM-ISS learns the paraphrase pattern from this representation interacting the semantics with syntax by exploiting a convolutional neural network with convolution-pooling structure. Experiments are conducted on the corpus of Microsoft Research Paraphrase (MSRP), PAN 2010 corpus, and PAN 2012 corpus for paraphrase plagiarism detection. The experimental results demonstrate that DPIM-ISS outperforms the classical word-matching approaches, the syntax-similarity approaches, the convolution neural network-based models, and some deep paraphrase identification models.


Sign in / Sign up

Export Citation Format

Share Document