scholarly journals Effect of Synthesis Method on Antibacterial and Antibiofilm Activity Properties of BaFeO3-δ Perovskite Nanomaterials

Author(s):  
eid khalaf ◽  
E. K. Abdel-Khalek ◽  
Ahmed. A. Askar ◽  
M. A. Motawea ◽  
Mohamed A. Aboelnasr ◽  
...  

Abstract BaFeO3-δ perovskite nanomaterials have been synthesized by two different methods: co-precipitation (Cop) and sol-gel (Sol) methods. Rietveld analysis of the X-Ray diffraction (XRD) shows that the samples are crystallized in rhombohedral perovskite structure with space group R3c. Scanning electron microscope (SEM) of these samples showed the agglomerations of various particles. Dynamic light scattering (DLS) showed that the average particle size of BaFeO3-Cop sample is larger than that of BaFeO3-Sol sample. The amount of oxygen deficient (δ) and the valence states of Fe ions in these samples were determined from Mössbauer spectroscopy. X-ray photoelectron spectroscopy (XPS) shows the elemental compositions and surface electronic states of these samples. The thermal, optical and magnetic properties of these samples depend on the amount of oxygen deficient (δ) and the valence states of Fe ions. Furthermore, the antibacterial and antibiofilm activity of these samples was systematically investigated. The present results suggest that BaFeO3-δ superparamagnetic perovskite can be used as antibacterial and antibiofilm agent.

2010 ◽  
Vol 152-153 ◽  
pp. 81-85
Author(s):  
Xiong Wang ◽  
Yin Lin ◽  
Jin Guo Jiang

The homogeneous multiferroic BiFeO3 nanoparticles with average particle size of 85 nm have been successfully synthesized by a simple sol-gel route. The prepared sample was characterized by a variety of techniques, such as X-ray diffractometry, thermogravimetric analysis and differential thermal analysis, differential scanning calorimeter analysis, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The obtained results shows that rapid sintering and subsequently quenching to room temperature are the two vital important factors for the preparation of pure BiFeO3. The magnetic phase transition (TN = 369 °C) and the ferroelectric phase transition (TC = 824.5 °C) were determined, revealing the antiferromagnetic and ferroelectric nature of the as-prepared BiFeO3 nanoparticles. The optical properties of the nanopowders were investigated. The strong band-gap absorption at 486 nm (2.55 eV) of the BiFeO3 nanoparticles may bring some novel applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 733 ◽  
Author(s):  
Rocío Tamayo ◽  
Rodrigo Espinoza-González ◽  
Francisco Gracia ◽  
Ubirajara Pereira Rodrigues-Filho ◽  
Marcos Flores ◽  
...  

Arsenic (As) contamination of water is a serious problem in developing countries. In water streams, arsenic can be as As(V) and As(III), the latter being the most toxic species. In this work, an innovative adsorbent based on CaTiO3 nanoparticles (CTO) was prepared by the sol-gel technique for the removal of As(III) from aqueous solution. X-ray diffraction of the CTO nanoparticles powders confirmed the CTO phase. Transmission electron microscopy observations indicated an average particle size of 27 nm, while energy dispersive X-ray spectroscopy analysis showed the presence of Ca, Ti, and O in the expected stoichiometric amounts. The surface specific area measured by Brunauer, Emmett, and Teller (BET) isotherm was 43.9 m2/g, whereas the isoelectric point determined by Zeta Potential measurements was at pH 3.5. Batch adsorption experiments were used to study the effect of pH on the equilibrium adsorption of As(III), using an arsenite solution with 15 mg/L as initial concentration. The highest removal was achieved at pH 3, reaching an efficiency of up to 73%, determined by X-ray fluorescence from the residual As(III) in the solution. Time dependent adsorption experiments at different pHs exhibited a pseudo-second order kinetics with an equilibrium adsorption capacity of 11.12 mg/g at pH 3. Moreover, CTO nanoparticles were regenerated and evaluated for four cycles, decreasing their arsenic removal efficiency by 10% without affecting their chemical structure. X-ray photoelectron spectroscopy analysis of the CTO surface after removal experiments, showed that arsenic was present as As(III) and partially oxidized to As(V).


2007 ◽  
Vol 22 (9) ◽  
pp. 2389-2397 ◽  
Author(s):  
Donggen Huang ◽  
Shijun Liao ◽  
Shuiqing Quan ◽  
Lei Liu ◽  
Zongjian He ◽  
...  

Anatase nitrogen and fluoride codoped TiO2 sol (N–F–TiO2) catalysts were fabricated by a modified sol-gel hydrothermal method, using tetrabutyl titanate as precursor. The microstructure and morphology of sol sample were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible dielectric relaxation spectroscopy (UV-VIS-DRS), x-ray photoelectron spectroscopy (XPS), etc. It was shown that N–F–TiO2 particles in sol were partly crystallized to anatase structure and dispersed in the aqueous medium homogeneously. The average particle size was ∼12.0 nm calculated from XRD patterns, and the particle size distribution was narrow. It was noteworthy that the N–F-codoped TiO2 sol particles showed strong visible-light response and high photocatalytic activity for formaldehyde degradation under irradiation by visible light (400–500 nm); we suggested that it may result from the generation of additional band of N 2p in the forbidden band and the synergetic effect of codoping nitrogen and fluorine.


2021 ◽  
Author(s):  
Mahesh Gaidhane ◽  
Deepak Taikar ◽  
Pravin Gaidhane ◽  
Kalpana Nagde

Abstract Nanocrystalline α-Fe2O3 is synthesized by sol-gel technique. The prepared nanomaterial was characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM) and photoluminescence (PL) techniques. X-ray powder diffraction analysis confirmed the formation of α-Fe2O3. Electron microscopy showed spherical morphologies with an average particle size of 30-40 nm. The magnetic property of the prepared material was studied by VSM at room temperature. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Photoluminescence (PL) emission spectra show intense broad emission band centered at 570 nm with 393 nm excitation indicating its usefulness for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe2O3 nanoparticles was analyzed and the nanopowder exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.


2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1057
Author(s):  
Jesús Hidalgo-Carrillo ◽  
Juan Martín-Gómez ◽  
M. Carmen Herrera-Beurnio ◽  
Rafael C. Estévez ◽  
Francisco J. Urbano ◽  
...  

Olive leaves (by-product from olive oil production in olive mills) were used as biotemplates to synthesize a titania-based artificial olive leaf (AOL). Scanning electron microscopy (SEM) images of AOL showed the successful replication of trichomes and internal structure channels present in olive leaves. The BET surface area of AOL was 52 m2·g−1. X-ray diffraction (XRD) and Raman spectra revealed that the resulting solid was in the predominantly-anatase crystalline form (7.5 nm average particle size). Moreover, the synthesis led to a red-shift in light absorption as compared to reference anatase (gap energies of 2.98 and 3.2 eV, respectively). The presence of surface defects (as evidenced by X-ray photoelectron spectroscopy, XPS, and electron paramagnetic resonance spectroscopy, EPR) and doping elements (e.g., 1% nitrogen, observed by elemental analysis and XPS) could account for that. AOL was preliminarily tested as a catalyst for hydrogen production through glycerol photoreforming and exhibited an activity 64% higher than reference material Evonik P25 under solar irradiation and 144% greater under ultraviolet radiation (UV).


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
George Fedorenko ◽  
Ludmila Oleksenko ◽  
Nelly Maksymovych

Nanosized tin dioxide with an average particle size of 5.3 nm was synthesized by a sol-gel method and characterized by IR spectroscopy, TEM, X-ray, and electron diffraction. The obtained SnO2 can be used as initial material for creation of gas-sensitive layers of adsorption semiconductor sensors. Addition of palladium into the initial nanomaterial allows to improve response to hydrogen of such sensors in comparison with sensors based on undoped SnO2 and provides fast response and recovery time, a wide measuring range of hydrogen content in air ambient, and good repeatability of the sensor signal. Such promising properties could make useful the sensors based on these nanomaterials for devices intended to determine hydrogen in air.


2000 ◽  
Vol 14 (22n23) ◽  
pp. 801-808 ◽  
Author(s):  
M. RAJENDRAN ◽  
M. GHANASHYAM KRISHNA ◽  
A. K. BHATTACHARYA

A novel all-inorganic aqueous sol–gel process has been developed to fabricate LaFeO3 thin films by dip-coating. Stable, positively charged colloidal sol particles of hydrous lanthanum ferrite with an average particle size (Z av ) of 7 nm were prepared and coated onto quartz plates under controlled conditions. The sols have been characterized using photon correlation spectroscopy (PCS) for Z av and size distribution. The redispersible gel was characterized by thermogravimetric and differential thermal analysis (TG-DTA) and also by isothermal heating followed by X-ray diffraction to identify the reaction sequence to form LaFeO 3. The sol–gel films as deposited were X-ray amorphous on heating up to 500°C, partially crystalline at 600°C, fully crystalline and single phase at 650°C and above. These films were continuous, polycrystalline, single phase, had uniform thickness in the range between 180 to 1000 nm, depending on deposition conditions, and showed about 80% optical transmittance. The optical band gap varied from 2.7 to 3.3 eV as a function of the annealing temperature. The refractive index increased with increase in annealing temperature from 1.55 at 500°C to 1.86 at 800°C.


2020 ◽  
Vol 12 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Xiangrong Ma ◽  
Rui Dang ◽  
Jieying Liu ◽  
Fang Yang ◽  
Huigui Li ◽  
...  

In this paper, we report a novel and facile approach for the synthesis of spinel NiFe2O4 nanoparticles and studies of its photocatalytic activity for oxidation of alcohols. The as-synthesized catalyst was thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental mapping, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and N2 adsorption–desorption isotherm (BET) analysis. The TEM image reveals cubic shapes with an average particle size of 10–20 nm. The as-synthesized spinel NiFe2O4 has proved to be an excellent photocatalyst for oxidation of alcohol to the aldehyde with a conversion of 80% and selectivity of 99%. The catalyst has also proved to be noteworthy as it does not loss its catalytic activity even after five cycles of reuse.


2012 ◽  
Vol 512-515 ◽  
pp. 1434-1437
Author(s):  
Xing Ao Li ◽  
Peng Li ◽  
Yong Tao Li ◽  
Jian Ping Yang ◽  
Qiu Fei Bai ◽  
...  

Bi0.95Eu0.05Fe0.95Co0.05O3 Nanoparticles sample was prepared by sol-gel process. The microstructure of samples was analysised by X-ray diffraction(XRD), the result indicated that it was the single phase rhombohedral perovskite structure. The morphology of samples was measured by scanning electron microsopy(SEM), the SEM photograph of samples indicated that the nanoparticles of Bi0.95Eu0.05Fe0.95Co0.05O3 sample were small than that of BiFeO3. The valence states of Fe ions in the samples was analysised by the X-ray absorption spectroscopy(XAS). The XAS of Fe2p showed that it was the mixed valence states (Fe2+ and Fe3+) of Fe ions in samples, and the binding energy of Bi0.95Eu0.05Fe0.95Co0.05O3 was bigger than that of BiFeO3.The magnetic characteristics of the samples were measured by vibrating sample magnetometer (VSM),the results showed that the weak metamagnetism were obtained from clear hysteresis loop and the magnetic saturation reached 0.408emu/g,compared with BiFeO3 sample, the magnetic properties were significantly enhanced.


Sign in / Sign up

Export Citation Format

Share Document