Multiferroic Bismuth Ferrite Nanoparticles: Rapid Sintering Synthesis, Characterization, and Optical Properties

2010 ◽  
Vol 152-153 ◽  
pp. 81-85
Author(s):  
Xiong Wang ◽  
Yin Lin ◽  
Jin Guo Jiang

The homogeneous multiferroic BiFeO3 nanoparticles with average particle size of 85 nm have been successfully synthesized by a simple sol-gel route. The prepared sample was characterized by a variety of techniques, such as X-ray diffractometry, thermogravimetric analysis and differential thermal analysis, differential scanning calorimeter analysis, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The obtained results shows that rapid sintering and subsequently quenching to room temperature are the two vital important factors for the preparation of pure BiFeO3. The magnetic phase transition (TN = 369 °C) and the ferroelectric phase transition (TC = 824.5 °C) were determined, revealing the antiferromagnetic and ferroelectric nature of the as-prepared BiFeO3 nanoparticles. The optical properties of the nanopowders were investigated. The strong band-gap absorption at 486 nm (2.55 eV) of the BiFeO3 nanoparticles may bring some novel applications.

2020 ◽  
Vol 12 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Xiangrong Ma ◽  
Rui Dang ◽  
Jieying Liu ◽  
Fang Yang ◽  
Huigui Li ◽  
...  

In this paper, we report a novel and facile approach for the synthesis of spinel NiFe2O4 nanoparticles and studies of its photocatalytic activity for oxidation of alcohols. The as-synthesized catalyst was thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental mapping, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and N2 adsorption–desorption isotherm (BET) analysis. The TEM image reveals cubic shapes with an average particle size of 10–20 nm. The as-synthesized spinel NiFe2O4 has proved to be an excellent photocatalyst for oxidation of alcohol to the aldehyde with a conversion of 80% and selectivity of 99%. The catalyst has also proved to be noteworthy as it does not loss its catalytic activity even after five cycles of reuse.


2021 ◽  
Author(s):  
eid khalaf ◽  
E. K. Abdel-Khalek ◽  
Ahmed. A. Askar ◽  
M. A. Motawea ◽  
Mohamed A. Aboelnasr ◽  
...  

Abstract BaFeO3-δ perovskite nanomaterials have been synthesized by two different methods: co-precipitation (Cop) and sol-gel (Sol) methods. Rietveld analysis of the X-Ray diffraction (XRD) shows that the samples are crystallized in rhombohedral perovskite structure with space group R3c. Scanning electron microscope (SEM) of these samples showed the agglomerations of various particles. Dynamic light scattering (DLS) showed that the average particle size of BaFeO3-Cop sample is larger than that of BaFeO3-Sol sample. The amount of oxygen deficient (δ) and the valence states of Fe ions in these samples were determined from Mössbauer spectroscopy. X-ray photoelectron spectroscopy (XPS) shows the elemental compositions and surface electronic states of these samples. The thermal, optical and magnetic properties of these samples depend on the amount of oxygen deficient (δ) and the valence states of Fe ions. Furthermore, the antibacterial and antibiofilm activity of these samples was systematically investigated. The present results suggest that BaFeO3-δ superparamagnetic perovskite can be used as antibacterial and antibiofilm agent.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 733 ◽  
Author(s):  
Rocío Tamayo ◽  
Rodrigo Espinoza-González ◽  
Francisco Gracia ◽  
Ubirajara Pereira Rodrigues-Filho ◽  
Marcos Flores ◽  
...  

Arsenic (As) contamination of water is a serious problem in developing countries. In water streams, arsenic can be as As(V) and As(III), the latter being the most toxic species. In this work, an innovative adsorbent based on CaTiO3 nanoparticles (CTO) was prepared by the sol-gel technique for the removal of As(III) from aqueous solution. X-ray diffraction of the CTO nanoparticles powders confirmed the CTO phase. Transmission electron microscopy observations indicated an average particle size of 27 nm, while energy dispersive X-ray spectroscopy analysis showed the presence of Ca, Ti, and O in the expected stoichiometric amounts. The surface specific area measured by Brunauer, Emmett, and Teller (BET) isotherm was 43.9 m2/g, whereas the isoelectric point determined by Zeta Potential measurements was at pH 3.5. Batch adsorption experiments were used to study the effect of pH on the equilibrium adsorption of As(III), using an arsenite solution with 15 mg/L as initial concentration. The highest removal was achieved at pH 3, reaching an efficiency of up to 73%, determined by X-ray fluorescence from the residual As(III) in the solution. Time dependent adsorption experiments at different pHs exhibited a pseudo-second order kinetics with an equilibrium adsorption capacity of 11.12 mg/g at pH 3. Moreover, CTO nanoparticles were regenerated and evaluated for four cycles, decreasing their arsenic removal efficiency by 10% without affecting their chemical structure. X-ray photoelectron spectroscopy analysis of the CTO surface after removal experiments, showed that arsenic was present as As(III) and partially oxidized to As(V).


2007 ◽  
Vol 22 (9) ◽  
pp. 2389-2397 ◽  
Author(s):  
Donggen Huang ◽  
Shijun Liao ◽  
Shuiqing Quan ◽  
Lei Liu ◽  
Zongjian He ◽  
...  

Anatase nitrogen and fluoride codoped TiO2 sol (N–F–TiO2) catalysts were fabricated by a modified sol-gel hydrothermal method, using tetrabutyl titanate as precursor. The microstructure and morphology of sol sample were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible dielectric relaxation spectroscopy (UV-VIS-DRS), x-ray photoelectron spectroscopy (XPS), etc. It was shown that N–F–TiO2 particles in sol were partly crystallized to anatase structure and dispersed in the aqueous medium homogeneously. The average particle size was ∼12.0 nm calculated from XRD patterns, and the particle size distribution was narrow. It was noteworthy that the N–F-codoped TiO2 sol particles showed strong visible-light response and high photocatalytic activity for formaldehyde degradation under irradiation by visible light (400–500 nm); we suggested that it may result from the generation of additional band of N 2p in the forbidden band and the synergetic effect of codoping nitrogen and fluorine.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Srihasam Saiganesh ◽  
Thyagarajan Krishnan ◽  
Golla Narasimha ◽  
Hesham S. Almoallim ◽  
Sulaiman Ali Alhari ◽  
...  

Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Junying Yang ◽  
Minye Huang ◽  
Shengsen Wang ◽  
Xiaoyun Mao ◽  
Yueming Hu ◽  
...  

In this study, a magnetic copper ferrite/montmorillonite-k10 nanocomposite (CuFe2O4/MMT-k10) was successfully fabricated by a simple sol-gel combustion method and was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunner–Emmett–Teller (BET) method, vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). For levofloxacin (LVF) degradation, CuFe2O4/MMT-k10 was utilized to activate persulfate (PS). Due to the relative high adsorption capacity of CuFe2O4/MMT-k10, the adsorption feature was considered an enhancement of LVF degradation. In addition, the response surface methodology (RSM) model was established with the parameters of pH, temperature, PS dosage, and CuFe2O4/MMT-k10 dosage as the independent variables to obtain the optimal response for LVF degradation. In cycle experiments, we identified the good stability and reusability of CuFe2O4/MMT-k10. We proposed a potential mechanism of CuFe2O4/MMT-k10 activating PS through free radical quenching tests and XPS analysis. These results reveal that CuFe2O4/MMT-k10 nanocomposite could activate the persulfate, which is an efficient technique for LVF degradation in water.


2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2021 ◽  
Author(s):  
Mahesh Gaidhane ◽  
Deepak Taikar ◽  
Pravin Gaidhane ◽  
Kalpana Nagde

Abstract Nanocrystalline α-Fe2O3 is synthesized by sol-gel technique. The prepared nanomaterial was characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM) and photoluminescence (PL) techniques. X-ray powder diffraction analysis confirmed the formation of α-Fe2O3. Electron microscopy showed spherical morphologies with an average particle size of 30-40 nm. The magnetic property of the prepared material was studied by VSM at room temperature. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Photoluminescence (PL) emission spectra show intense broad emission band centered at 570 nm with 393 nm excitation indicating its usefulness for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe2O3 nanoparticles was analyzed and the nanopowder exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.


2013 ◽  
Vol 66 (5) ◽  
pp. 564 ◽  
Author(s):  
Mingmei Zhang ◽  
Qian Sun ◽  
Zaoxue Yan ◽  
Junjie Jing ◽  
Wei Wei ◽  
...  

Well dispersed Pd@Ni bimetallic nanoparticles on multi-walled carbon nanotubes (Pd@Ni/MWCNT) are prepared and used as catalysts for the oxidation of benzyl alcohol. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction were performed to characterise the synthesised catalyst. The results show a uniform dispersion of Pd@Ni nanoparticles on MWCNT with an average particle size of 4.0 nm. The as synthesised catalyst was applied to the oxidation of benzyl alcohol. A 99 % conversion of benzyl alcohol and a 98 % selectivity of benzaldehyde were achieved by using the Pd@Ni/MWCNT (Pd: 0.2 mmol) catalyst with water as a solvent and H2O2 as oxidant at 80°C. The catalytic activity of Pd@Ni/MWCNT towards benzyl alcohol is higher than that of a Pd/MWCNT catalyst at the same Pd loadings. The catalyst can be easily separated due to its magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document