scholarly journals The Unresolved Definition of The Pressure-Viscosity Coefficient

Author(s):  
Scott Bair

Abstract In the classical approach to elastohydrodynamic lubrication (EHL) a single parameter, the pressure-viscosity coefficient, quantifies the isothermal pressure dependence of the viscosity for use in prediction of film thickness. Many definitions are in current use. Progress toward a successful definition of this property has been hampered by the refusal of those working in classical EHL to acknowledge the existence of accurate measurements of the piezoviscous effect that have existed for nearly a century. The Hamrock and Dowson pressure-viscosity coefficient at high temperature requires knowledge of the piezoviscous response at pressures which exceed the inlet pressure and may exceed the Hertz pressure. The definition of pressure-viscosity coefficient and the assumed equation of state must limit the use of the classical formulas, including Hamrock and Dowson, to liquids with high Newtonian limit and to low temperature. Given that this problem has existed for at least fifty years without resolution, it is reasonable to conclude that there is no definition of pressure-viscosity coefficient that will quantify the piezoviscous response for an analytical calculation of EHL film thickness at temperatures above ambient.

Author(s):  
I. I. Kudish ◽  
P. Kumar ◽  
M. M. Khonsary ◽  
S. Bair

The prediction of elastohydrodynamic lubrication (EHL) film thickness requires knowledge of the lubricant properties. Today, in many instances, the properties have been obtained from a measurement of the central film thickness in an optical EHL point contact simulator and the assumption of a classical Newtonian film thickness formula. This technique has the practical advantage of using an effective pressure-viscosity coefficient which compensates for shear-thinning. We have shown by a perturbation analysis and by a full EHL numerical solution that the practice of extrapolating from a laboratory scale measurement of film thickness to the film thickness of an operating contact within a real machine may substantially overestimate the film thickness in the real machine if the machine scale is smaller and the lubricant is shear-thinning in the inlet zone.


2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Scott Bair ◽  
Wassim Habchi

Abstract The concentrated contact formed between a steel ball and a glass disc—the optical elastohydrodynamic lubrication (EHD) rig—has been the primary instrument for experimental investigations of elastohydrodynamic film thickness. It has been a source for values of pressure-viscosity coefficient, a difficult-to-define property of liquids. However, comparisons with the pressure dependence of the viscosity obtained in viscometers show little agreement. There are multiple reasons for this failure including shear-thinning and compressibility of the oil. Another reason for the poor agreement is the subject of this short note. The optical EHD rig using glass as one surface will only be in the piezoviscous-elastic (EHD) regime when the pressure-viscosity coefficient is large. For low values, it would be operating in the isoviscous-elastic regime (soft EHD).


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Puneet Katyal ◽  
Punit Kumar

This paper offers central film thickness formula pertaining to shear-thinning lubricants under rolling/sliding point contact conditions. The shear-thinning behavior of the lubricants is modeled using Carreau viscosity equation and the piezo-viscous response employed herein is the free-volume based Doolittle equation in conjunction with Tait's equation of state for lubricant compressibility. The present formulation is based on reciprocal asymptotic isoviscous piezo-viscous coefficient as it is a more accurate measure of the high pressure piezo-viscous response of elastohydrodynamic lubricated (EHL) lubricants compared to the conventional pressure–viscosity coefficient. Comparisons between simulated, curve-fitted values, and experimental results validate both the employed numerical approach and rheological model.


1972 ◽  
Vol 94 (1) ◽  
pp. 27-34 ◽  
Author(s):  
S. Y. Poon

The formation of a lubricating film by grease in conditions pertinent to elastohydrodynamic lubrication is studied in a disk machine, and the thickness measured by means of a magnetic reluctance technique. The greases examined are three lithium hydroxystearate greases, of different soap structures and soap contents, a low temperature sodium-based grease, and a high temperature clay-based grease, all in mineral oils. The film thickness of greases in EHL differs from that of pure mineral oils in one important aspect: with one charge of the lubricant the thickness decreases continuously with time. The time-dependent behavior of greases is examined in relation to the thickener structure, viscosity of the base oil, and the conditions of the inlet zone.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Ilya I. Kudish ◽  
P. Kumar ◽  
M. M. Khonsari ◽  
Scott Bair

The estimation or prediction of elastohydrodynamic lubrication (EHL) film thickness requires knowledge of the lubricant properties. Today, in many instances, the lubricant properties have been obtained from a measurement of the central film thickness and the assumption of a classical Newtonian film-thickness formula. This technique has the practical advantage of using an effective pressure-viscosity coefficient, which compensates for shear-thinning. We have shown by a perturbation analysis of limiting cases for fluid with Carreau rheology (represented by Newtonian and power fluid) and by a full EHL numerical solution for Carreau fluid that the practice of extrapolating from a laboratory scale measurement of film thickness to the film thickness of an operating contact may substantially overestimate the film thickness in the real machine if the machine scale is smaller and the lubricant is shear-thinning within the inlet zone. The intention here is to show that errors result from extrapolation of Newtonian formulas to different scale and not to provide advice regarding quantitative engineering calculations.


Author(s):  
Niraj Kumar ◽  
Punit Kumar

An elastohydrodynamic lubrication model is proposed for line contacts under pressurized ambient conditions often encountered in hydraulic pumps, submarine machinery and many other submerged systems. It has been demonstrated that the film forming behavior under such conditions is essentially different from that in conventional elastohydrodynamic lubrication contacts. The numerical simulation results are regressed to develop new central and minimum film thickness equations for Newtonian fluids as functions of ambient pressure, speed, load, and material parameters. An alternative approach is also discussed which involves the use of existing film thickness formulas with ambient viscosity and pressure–viscosity coefficient pertaining to the desired pressure range. A film thickness enhancement of more than 100% over conventional elastohydrodynamic lubrication case is observed. This enhancement is shown to be highly sensitive to the pressure–viscosity coefficient. Besides, the effect of shear-thinning behavior is also investigated and it is found to lower the film thickness enhancement, especially at high ambient pressures.


1994 ◽  
Vol 116 (4) ◽  
pp. 770-776 ◽  
Author(s):  
Roland Larsson ◽  
Erik Ho¨glund

Experimental and theoretical studies of elastohydrodynamically lubricated contacts normally assume static or quasi-static conditions. Nonsteady conditions are, however, very common, e.g., in machine elements such as ball bearings, gears, and cam-follower mechanisms. In this paper, the case of a ball impacting a flat lubricated surface is investigated theoretically. This case implies transient conditions and the lubricating effect is due to pure squeeze action in the contact. Pressure and film thickness distributions are computed during impact and rebound. The results of the analysis show the effects of ball mass, initial impact velocity, lubricant properties, and the thickness of the applied lubricant layer on, for example, minimum film thickness, maximum impact force, and maximum pressure. Increasing impact velocity increases the minimum value of film thickness achieved during the total impact time. The damping capacity of the lubricating film is very high at low impact velocity and small ball mass. In fact, the damping is so high that no rebound occurs if the velocity or the ball mass are smaller than certain critical values. The thickness of the lubricant layer has very little influence on the results if it is thicker than a certain value. If the pressure-viscosity coefficient is increased, the film becomes thicker.


2006 ◽  
Vol 128 (3) ◽  
pp. 624-631 ◽  
Author(s):  
Scott Bair ◽  
Yuchuan Liu ◽  
Q. Jane Wang

There has been a long-standing need for a piezoviscous parameter αfilm that, together with the ambient viscosity μ0, will completely quantify the Newtonian rheology so that the film thickness for liquids that do not shear-thin in the inlet may be calculated as h=h(μ0,αfilm,…), regardless of the details of the pressure-viscosity response. It seems that Blok’s reciprocal asymptotic isoviscous pressure has certain advantages over the conventional pressure-viscosity coefficient, which is poorly suited for this purpose. The first detailed review of piezoviscous models for low pressures is provided. A simulation code that is apparently stable for all realistic pressure-viscosity response was utilized with diverse piezoviscous models and model liquids to develop a satisfactory definition of αfilm that reads αfilm=[1−exp(−3)]∕[∫03∕α*μ(0)dp∕μ(p)]; 1∕α*=∫0∞μ(0)dp∕μ(p). In the case of μ=μ0exp(αp),αfilm=α and formulas are provided for other models.


1969 ◽  
Vol 91 (3) ◽  
pp. 464-475 ◽  
Author(s):  
P. E. Fowles

Conventional elastohydrodynamic theory is modified and applied to the collision between two idealized surface asperities in an isothermal sliding system. Solutions for the pressure and film thickness between the asperities as functions of their overlap, the sliding speed, the pressure-viscosity coefficient of the lubricant, and the time since the initiation of the collision are obtained numerically for the first half of the collision process. It is shown that extremely high pressures and small film thicknesses are to be expected at the center of the contact region assuming the rheology of the lubricant film can be represented by that of the bulk lubricant.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jing Hua ◽  
Marcus Björling ◽  
Mattias Grahn ◽  
Roland Larsson ◽  
Yijun Shi

Abstract Intelligent control of friction is an attractive but challenging topic and it has rarely been investigated for full size engineering applications. In this work, it is instigated if it would be possible to adjust friction by controlling viscosity in a lubricated contact. By exploiting the ability to adjust the viscosity of the switchable ionic liquids, 1,8-Diazabicyclo (5.4.0) undec-7-ene (DBU)/ glycerol mixture via the addition of CO2, the friction could be controlled in the elastohydrodynamic lubrication (EHL) regime. The friction decreased with increasing the amount of CO2 to the lubricant and increased after partial releasing CO2. As CO2 was absorbed by the liquid, the viscosity of the liquid increased which resulted in that the film thickness increased. At the same time the pressure-viscosity coefficient decreased with the addition of CO2. When CO2 was released again the friction increased and it was thus possible to control friction by adding or removing CO2.


Sign in / Sign up

Export Citation Format

Share Document