Effects of Chronic Cholinergic Stimulation Associated With Aerobic Physical Training on Cardiac Morphofunctional and Autonomic Parameters in Spontaneously Hypertensive Rats
Abstract We investigated in spontaneously hypertensive rats (SHR) the hemodynamic, cardiac morphofunctional, and cardiovascular autonomic adaptations after a protocol of aerobic physical training associated with chronic cholinergic stimulation. Fifty-four SRH were divided into two groups: trained and untrained. Afterward, each group was subdivided into three smaller groups: vehicle, treated with pyridostigmine bromide at 5mg/kg/day, and at 15mg/kg/day. The following protocols were assessed: echocardiography, autonomic double pharmacological blockade, analysis of heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS). Physical training and pyridostigmine bromide reduced blood pressure and heart rate and increased vagal participation in cardiac tonic autonomic balance. Associated the responses were potentialized. Pyridostigmine bromide increased the oscillation of low frequency (LF:0.2-0.75Hz) and high frequency (HF:0.75-3Hz) of HRV. However, the association with physical training attenuated HF oscillations. Pyridostigmine bromide also increased LF oscillations of BPV. Both treatments promoted morphofunctional adaptations and associated increased the ejection volume, ejection fraction, cardiac output, and cardiac index. In conclusion, the association of pyridostigmine bromide and physical training promoted greater benefits in hemodynamic parameters and increase vagal influence on cardiac autonomic tonic balance. Nonetheless, pyridostigmine bromide alone seems to negatively affect BPV, while the association of treatment negatively influences HRV.