scholarly journals In Vitro Cell Responses of MG-63 Osteoblast Cells on Bioactive Diopside and Wollastonite Nano-Bioceramics for Biomedical Applications

2020 ◽  
Author(s):  
Ruhollah Zamani Foroushani ◽  
Ebrahim Karamian ◽  
Mohammad Rafienia

Abstract The present study aimed to synthesize and characterize diopside (CaMgSi2O6) and wollastonite (CaSiO3) nano-bioceramics via a combination of mechano-chemical and calcination processes. In vitro biomineralization and cell responses of wollastonite and diopside were performed on simulated body fluid (SBF) and MG-63 osteoblast cells. Results revealed proper tissue biomineralization of wollastonite and diopside through the generation of an apatite-like layer on the surface of nano-bioceramics. Cell responses of wollastonite and diopside eventuated non-cytotoxicity by MG-63 osteoblast cells, and their viability and cell proliferation were confirmed. Alizarin red staining of diopside and wollastonite evidenced great bioactivity and tissue biomineralization, and the ALP enzyme of diopside and wollastonite was enhanced in contact with the MG-63 osteoblast cells. Regarding the existence of Mg2+ in the calcium-silicate network and the stability network, diopside illustrated high biological and cell responses in comparison to wollastonite, and both of them were suggested as bioactive and biocompatible nano-bioceramics for biomedical applications.

2006 ◽  
Vol 309-311 ◽  
pp. 453-456 ◽  
Author(s):  
Haydée Y. López ◽  
Dora A. Cortés-Hernández ◽  
Sergio Escobedo ◽  
D. Mantovani

In the aim to decrease the degradation rate of magnesium in simulated body fluid, pure magnesium was treated by two different routes, i) by soaking specimens in an HF aqueous solution at 30oC for 30 min and ii) by heating specimens at 345oC for 15 min. The treated samples were immersed in simulated body fluid (SBF) at 37oC for different periods of time. Samples with no treatment were also immersed in SBF. The magnesium released into the SBF, the weight loss of the specimens and the pH of SBF increased with time of immersion in all the cases. The heat treated samples showed a lower degradation rate and lower pH values. A substantial decrease of magnesium concentration in the SBF corresponding to the heat treated samples was also observed. However, the degradation rate of the heat treated samples remains being extremely high. On the other hand, a bonelike apatite layer was observed after only 3 days of immersion in SBF in all the cases. The thickness of this layer increased with time of immersion. Further research needs to be performed to decrease the degradation rate. However, these results indicate that magnesium is a highly potential bioactive material for biomedical applications.


2010 ◽  
Vol 636-637 ◽  
pp. 31-35 ◽  
Author(s):  
Gisela M. Luz ◽  
João F. Mano

In this study a new P-free system applied to the production of Bioactive Glass Nanoparticles (BG-NPs) is proposed, in order to evaluate the effect of suppressing this component, in the bioactivity capability of the materials. The BG-NPs, based on both ternary (SiO2-CaO-P2O5) and binary (SiO2-CaO) systems, were prepared via a sol-gel method. The morphology and composition of the BG-NPs were studied using FTIR and SEM. New composite membranes were produced combining chitosan and the BG-NPs. The bioactive character of the prepared biodegradable membranes was accessed in vitro by analyzing the capability for apatite formation onto the surface after being immersed in simulated body fluid (SBF). EDX and SEM were used to confirm the bioactivity of the materials.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

Nanomedicine ◽  
2021 ◽  
Author(s):  
Jean Valdir Uchôa Teixeira ◽  
Fátima Raquel Azevedo Maia ◽  
Mariana Carvalho ◽  
Rui Reis ◽  
Joaquim Miguel Oliveira ◽  
...  

Aim: To established a simple, controlled and reproducible method to synthesize gallium (Ga)-coated polydopamine (PDA) nanoparticles (NPs). Materials & methods: PDA NPs were synthesized in alkali medium with posterior Ga shell formation due to ion chelation on the NP surface. Results: The obtained results with energy-dispersive x-ray spectroscopy confirmed the incorporation of Ga on the PDA NP surface. The cytotoxicity of Ga-coated PDA NPs was evaluated in vitro at different concentrations in contact with human adipose-derived stem cells. Further cell analysis also demonstrated the benefit of Ga-coated PDA NPs, which increased the cell proliferation rate compared with noncoated PDA NPs. Conclusion: This study indicated that Ga could work as an appropriate shell for PDA NPs, inducing cell proliferation at the analyzed concentrations.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2137
Author(s):  
Lubomir Medvecky ◽  
Maria Giretova ◽  
Radoslava Stulajterova ◽  
Lenka Luptakova ◽  
Tibor Sopcak

A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 667
Author(s):  
Zexin Wang ◽  
Fei Ye ◽  
Liangyu Chen ◽  
Weigang Lv ◽  
Zhengyi Zhang ◽  
...  

In this work, ZK60 magnesium alloy was employed as a substrate material to produce ceramic coatings, containing Ca and P, by micro-arc oxidation (MAO). Atmospheric plasma spraying (APS) was used to prepare the hydroxyapatite layer (HA) on the MAO coating to obtain a composite coating for better biological activity. The coatings were examined by various means including an X-ray diffractometer, a scanning electron microscope and an energy spectrometer. Meanwhile, an electrochemical examination, immersion test and tensile test were used to evaluate the in vitro performance of the composite coatings. The results showed that the composite coating has a better corrosion resistance. In addition, this work proposed a degradation model of the composite coating in the simulated body fluid immersion test. This model explains the degradation process of the MAO/APS coating in SBF.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1090
Author(s):  
Bai-Hung Huang ◽  
Yi-Jung Lu ◽  
Wen-Chien Lan ◽  
Muhammad Ruslin ◽  
Hung-Yang Lin ◽  
...  

The effects of anodized titanium (Ti) with a potential hydrogen fluoride (HF) acid pretreatment through cathodization on the formation of nano-porous Ti dioxide (TiO2) layer were characterized using field-emission scanning electron microscopy, grazing incidence X-ray diffractometer, and contact angle goniometer. The biocompatibility was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test. Analytical results found that a well-aligned nano-porous structure was formed on the anodized Ti surface with HF pretreatment concentration above 0.5%. Microstructure of the nano-porous Ti dioxide surface generated by anodization with HF pretreatment was composed of anatase and rutile phases, while the anodized Ti sample with HF pretreatment concentration of 0.5% presented excellent hydrophilicity surface. An in-vitro biocompatibility also indicated that osteoblast cells grown on the surface of the anodized Ti sample with HF pretreatment increased with the increase of culture time. The filopodia of osteoblast cells not only adhered flat, but also tightly grabbed the nano-porous structure for promoting cell adhesion and proliferation. Therefore, the anodized Ti with HF pretreatment can form a functionalized surface with great biocompatibility for biomedical applications, particularly for dental implants.


2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


2007 ◽  
Vol 330-332 ◽  
pp. 131-134
Author(s):  
S. Yabe ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka ◽  
Y. Yoshida ◽  
...  

Titania layer was fabricated on the titanium substrates with chemical treatment with 20ml or 40ml of hydrogen peroxide solution and subsequent heat treatment at 400°C, coded as CHT20 and CHT40, respectively. CHT20 spontaneously deposited apatite on the surface in a simulated body fluid (SBF), while CHT40 did not. TF-XRD patterns showed that the diffraction intensity of anatase of CHT20 was higher than that of CHT40. It was suggested that the thicker titania layer indicated in vitro apatite forming ability. The cell proliferation of CHT20 and CHT40 were lower than NT and HT. Since the surface of titania layers became hydrophobic after autoclaving, we can suppose that the cell proliferation on CHT20 and CHT40 were lower than NT and HT due to their surface hydrophobicity.


Sign in / Sign up

Export Citation Format

Share Document