scholarly journals A Novel Grey Power-markov Model for the Prediction of China's Electricity Consumption

Author(s):  
Liqin Sun ◽  
Youlong Yang ◽  
Tong Ning ◽  
Jiadi Zhu

Abstract The grey prediction models of time series are widely used in demand forecasting because only limited data can be used to build the models and no statistical hypothesis is needed. In this paper, a grey power Markov prediction model (RGPMM(λ,1,1)) with time-varying parameters is proposed. This model is based on the principle of “new information priority”, combined with rolling mechanism and Markov theory, and the prediction residual error is modified to further improve the prediction accuracy. Compared with the classic grey models, the new model not only overcomes the inherent defect of poor adaptability to the original data, but also uses real-time information to better reflect the nonlinear characteristics of the original data, so it can be used to describe and predict the nonlinear development trend of things. In order to verify the validity and applicability of the model, the proposed model is used to forecast the total electric consumption in China. The experimental results show that the proposed model has a better prediction effect than other grey models. The proposed model is used to forecast China’s total electricity consumption in the next six years from 2018 to 2023.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiming Hu ◽  
Chong Liu

Grey prediction models have been widely used in various fields of society due to their high prediction accuracy; accordingly, there exists a vast majority of grey models for equidistant sequences; however, limited research is focusing on nonequidistant sequence. The development of nonequidistant grey prediction models is very slow due to their complex modeling mechanism. In order to further expand the grey system theory, a new nonequidistant grey prediction model is established in this paper. To further improve the prediction accuracy of the NEGM (1, 1, t2) model, the background values of the improved nonequidistant grey model are optimized based on Simpson formula, which is abbreviated as INEGM (1, 1, t2). Meanwhile, to verify the validity of the proposed model, this model is applied in two real-world cases in comparison with three other benchmark models, and the modeling results are evaluated through several commonly used indicators. The results of two cases show that the INEGM (1, 1, t2) model has the best prediction performance among these competitive models.


Author(s):  
Zhendong Zhao ◽  
Changzheng Hu

With an increasing number of vehicles and increasing environmental protection requirements, countries have accelerated the rate of revision of automobile noise standards and legislation. Scientific prediction of the limiting values in future noise standards is helpful to promote the development of automobile noise reduction technology and measurement analysis technology. The development of noise standard limits has its own objective laws and is restricted to the current and future developments in automotive technology. The amplitude of noise will be reduced increasingly less in the future. Grey prediction theory can explore the variation rules by processing a few effective data. In this paper, grey theory is used to deal with the limited original data in the vehicle noise standard. Non-equal-interval quadratic fitting of the grey Verhulst direct model to predict the future noise standard limits is selected on the basis of calculation and comparison of different models. The Verhulst model is employed to describe the system development by using the characteristics of saturation. By means of quadratic fitting, the accuracy of the Verhulst model can be further improved. The simulation results show the validity and the accuracy of the model. The prediction result is useful for standards and regulations makers and for car manufacturers.


2021 ◽  
pp. 109634802110478
Author(s):  
Yi-Chung Hu ◽  
Geng Wu ◽  
Peng Jiang

Accurately forecasting the demand for tourism can help governments formulate industrial policies and guide the business sector in investment planning. Combining forecasts can improve the accuracy of forecasting the demand for tourism, but limited work has been devoted to developing such combinations. This article addresses two significant issues in this context. First, the linear combination is the commonly used method of combining tourism forecasts. However, additive techniques unreasonably ignore interactions among the inputs. Second, the available data often do not adhere to specific statistical assumptions. Grey prediction has thus drawn attention because it does not require that the data follow any statistical distribution. This study proposes a nonadditive combination method by using the fuzzy integral to integrate single-model forecasts obtained from individual grey prediction models. Using China and Taiwan tourism demand as empirical cases, the results show that the proposed method outperforms the other combined methods considered here.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kaihe Shi ◽  
Lifeng Wu

Purpose The proposed model can emphasize the priority of new information and can extract messages from the first pair of original data. The comparison results show that the proposed model can improve the traditional grey model. Design/methodology/approach The grey multivariate model with fractional Hausdorff derivative is firstly put forward to enhance the forecasting accuracy of traditional grey model. Findings The proposed model is used to predict the air quality composite index (AQCI) in ten cities respectively. Originality/value The effect of population density on AQCI in cities with poor air quality is not as significant as that of the cities with better air quality.


2013 ◽  
Vol 392 ◽  
pp. 618-621
Author(s):  
Zhi Gang Wang ◽  
Qing Jie Zhou ◽  
Xing Hua Zhou

A combined power demand forecasting model with variable weight considering both of the impact of the macroeconomic situation and the internal development trend is proposed. The proposed model consists of regression analysis models and the trend extrapolation models. The variable weight is determined by the difference of the prediction results between the two kinds of models . Beijing's power demand forecasting illustrates the usefulness and reliability of the combined model.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wuyong Qian ◽  
Hao Zhang ◽  
Aodi Sui ◽  
Yuhong Wang

PurposeThe purpose of this study is to make a prediction of China's energy consumption structure from the perspective of compositional data and construct a novel grey model for forecasting compositional data.Design/methodology/approachDue to the existing grey prediction model based on compositional data cannot effectively excavate the evolution law of correlation dimension sequence of compositional data. Thus, the adaptive discrete grey prediction model with innovation term based on compositional data is proposed to forecast the integral structure of China's energy consumption. The prediction results from the new model are then compared with three existing approaches and the comparison results indicate that the proposed model generally outperforms existing methods. A further prediction of China's energy consumption structure is conducted into a future horizon from 2021 to 2035 by using the model.FindingsChina's energy structure will change significantly in the medium and long term and China's energy consumption structure can reach the long-term goal. Besides, the proposed model can better mine and predict the development trend of single time series after the transformation of compositional data.Originality/valueThe paper considers the dynamic change of grey action quantity, the characteristics of compositional data and the impact of new information about the system itself on the current system development trend and proposes a novel adaptive discrete grey prediction model with innovation term based on compositional data, which fills the gap in previous studies.


2016 ◽  
Vol 27 (1) ◽  
pp. 2 ◽  
Author(s):  
Coşkun Hamzaçebi

Forecasting electricity consumption is a very important issue for governments and electricity related foundations of public sector. Recently, Grey Modelling (GM (1,1)) has been used to forecast electricity demand successfully. GM (1,1) is useful when the observed data is limited, and it does not require any preliminary information about the data distribution. However, the original form of GM (1,1) needs some improvements in order to use for time series, which exhibit seasonality. In this study, a grey forecasting model which is called SGM (1,1) is proposed to give the forecasting ability to the basic form of GM(1,1) in order to overcome seasonality issues. The proposed model is then used to forecast the monthly electricity demand of Turkey between 2015 and 2020. Obtained forecasting values were used to plan the primary energy sources of electricity production. The findings of the study may guide the planning of future plant investments and maintenance operations in Turkey. Moreover, the method can also be applied to predict seasonal electricity demand of any other country.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Guohui Li ◽  
Songling Zhang ◽  
Hong Yang

Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed IMFs and residuals are the final prediction results. Six kinds of prediction models are compared, which are DBN prediction model, EMD-DBN prediction model, EEMD-DBN prediction model, CEEMD-DBN prediction model, ESMD-DBN prediction model, and the proposed model in this paper. The same sunspots time series are predicted with six kinds of prediction models. The experimental results show that the proposed model has better prediction accuracy and smaller error.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 960
Author(s):  
Peng Jiang ◽  
Yi-Chung Hu ◽  
Wenbao Wang ◽  
Hang Jiang ◽  
Geng Wu

Time series data for decision problems such as energy demand forecasting are often derived from uncertain assessments, and do not meet any statistical assumptions. The interval grey number becomes an appropriate representation for an uncertain and imprecise observation. In order to obtain nonlinear interval grey numbers with better forecasting accuracy, this study proposes a combined model by fusing interval grey numbers estimated by neural networks (NNs) and the grey prediction models. The proposed model first uses interval regression analysis using NNs to estimate interval grey numbers for a real valued sequence; and then a grey residual modification model is constructed using the upper and lower wrapping sequences obtained by NNs. It turns out that two different kinds of interval grey numbers can be estimated by nonlinear interval regression analysis. Forecasting accuracy on real data sequences was then examined by the best non-fuzzy performance values of the combined model. The proposed combined model performed well compared with the other interval grey prediction models considered.


Sign in / Sign up

Export Citation Format

Share Document