grey models
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 37)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yan Zhang ◽  
Huiping Wang ◽  
Yi Wang

Based on the existing grey prediction model, this paper proposes a new grey prediction model (the fractional discrete grey model, FDGM (1, 1, t α )), introduces the modeling mechanism and characteristics of the FDGM (1, 1, t α ), and uses three groups of data to verify its effectiveness compared with that of other grey models. This paper forecasts the building energy consumption in China over the next five years based on the idea of metabolism. The results show that the FDGM (1, 1, t α ) can be transformed into other grey models through parameter setting changes, so the new model has strong adaptability. The FDGM (1, 1, t α ) is more reliable and effective than the other six compared grey models. From 2018 to 2022, the total energy consumption levels of civil buildings, urban civil buildings, and civil buildings specifically in Beijing will exhibit steady upward trends, with an average annual growth rate of 2.61%, 1.92%, and 0.78%, respectively.


Author(s):  
Yi Zhang ◽  
Zaijun Wu ◽  
Jiajie Xu ◽  
Xiao Tan ◽  
Dongdong Zhang ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-14
Author(s):  
Huang Meixin ◽  
Liu Caixia

Fractional order grey model is effective in describing the uncertainty of the system. In this paper, we propose a novel variable-order fractional discrete grey model (short for VOFDGM(1,1)) by combining the discrete grey model and variable-order fractional accumulation, which is a more general form of the DGM(1,1). The detailed modeling procedure of the presented model is first systematically studied, in particular, matrix perturbation theory is used to prove the validity in terms of the stability of the model, and then, the model parameters are optimized by the whale optimization algorithm. The accuracy of the proposed model is verified by comparing it with classical models on six data sequences with different forms. Finally, the model is applied to predict the electricity consumption of Beijing and Liaoning Province of China, and the results show that the model has a better prediction performance compared with the other four commonly-used grey models. To the best of our knowledge, this is the first time that the variable-order fractional accumulation is introduced into the discrete grey model, which greatly increases the prediction accuracy of the DGM(1,1) and extends the application range of grey models.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yitong Liu ◽  
Yang Yang ◽  
Dingyu Xue ◽  
Feng Pan

PurposeElectricity consumption prediction has been an important topic for its significant impact on electric policies. Due to various uncertain factors, the growth trends of electricity consumption in different cases are variable. However, the traditional grey model is based on a fixed structure which sometimes cannot match the trend of raw data. Consequently, the predictive accuracy is variable as cases change. To improve the model's adaptability and forecasting ability, a novel fractional discrete grey model with variable structure is proposed in this paper.Design/methodology/approachThe novel model can be regarded as a homogenous or non-homogenous exponent predicting model by changing the structure. And it selects the appropriate structure depending on the characteristics of raw data. The introduction of fractional accumulation enhances the predicting ability of the novel model. And the relative fractional order r is calculated by the numerical iterative algorithm which is simple but effective.FindingsTwo cases of power load and electricity consumption in Jiangsu and Fujian are applied to assess the predicting accuracy of the novel grey model. Four widely-used grey models, three classical statistical models and the multi-layer artificial neural network model are taken into comparison. The results demonstrate that the novel grey model performs well in all cases, and is superior to the comparative eight models.Originality/valueA fractional-order discrete grey model with an adaptable structure is proposed to solve the conflict between traditional grey models' fixed structures and variable development trends of raw data. In applications, the novel model has satisfied adaptability and predicting accuracy.


2021 ◽  
Author(s):  
Liqin Sun ◽  
Youlong Yang ◽  
Tong Ning ◽  
Jiadi Zhu

Abstract The grey prediction models of time series are widely used in demand forecasting because only limited data can be used to build the models and no statistical hypothesis is needed. In this paper, a grey power Markov prediction model (RGPMM(λ,1,1)) with time-varying parameters is proposed. This model is based on the principle of “new information priority”, combined with rolling mechanism and Markov theory, and the prediction residual error is modified to further improve the prediction accuracy. Compared with the classic grey models, the new model not only overcomes the inherent defect of poor adaptability to the original data, but also uses real-time information to better reflect the nonlinear characteristics of the original data, so it can be used to describe and predict the nonlinear development trend of things. In order to verify the validity and applicability of the model, the proposed model is used to forecast the total electric consumption in China. The experimental results show that the proposed model has a better prediction effect than other grey models. The proposed model is used to forecast China’s total electricity consumption in the next six years from 2018 to 2023.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiming Hu ◽  
Chong Liu

Grey prediction models have been widely used in various fields of society due to their high prediction accuracy; accordingly, there exists a vast majority of grey models for equidistant sequences; however, limited research is focusing on nonequidistant sequence. The development of nonequidistant grey prediction models is very slow due to their complex modeling mechanism. In order to further expand the grey system theory, a new nonequidistant grey prediction model is established in this paper. To further improve the prediction accuracy of the NEGM (1, 1, t2) model, the background values of the improved nonequidistant grey model are optimized based on Simpson formula, which is abbreviated as INEGM (1, 1, t2). Meanwhile, to verify the validity of the proposed model, this model is applied in two real-world cases in comparison with three other benchmark models, and the modeling results are evaluated through several commonly used indicators. The results of two cases show that the INEGM (1, 1, t2) model has the best prediction performance among these competitive models.


2021 ◽  
Vol 10 (1) ◽  
pp. 395-402
Author(s):  
Manivanna Boopathi A ◽  
Mohamed Ali E A ◽  
Subha Velappan ◽  
Abudhahir A
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document