scholarly journals A reference gene catalogue of chicken gut antibiotic resistomes

Author(s):  
Jintao Yang ◽  
Cuihong Tong ◽  
Danyu Xiao ◽  
Longfei Xie ◽  
Ruonan Zhao ◽  
...  

Abstract Background: The chicken gut microbiota, as a reservoir of antibiotic resistance genes (ARGs), poses a high risk to humans and animals worldwide. Yet a comprehensive exploration of the chicken gut antibiotic resistomes remains incomplete. Results: In this study, we established the largest chicken gut resistance gene catalogue to date through metagenomic analysis of 629 chicken gut samples. We found significantly higher abundance of ARGs in the Chinese chicken gut than that in the Europe. tetX, mcr, and blaNDM, the genes resistant to antibiotics of last resort for human and animal health, were frequently detected in the Chinese chicken gut. The abundance of ARGs was linearly correlated with that of mobile genetic elements (MGEs). The host-tracking analysis identified Escherichia, Enterococcus, Staphylococcus, Klebsiella, and Lactobacillus as the major ARG hosts. Especially, Lactobacillus, an intestinal probiotic, carried multiple drug resistance genes, and was proportional to ISLhe63, highlighting its potential risk in agricultural production processes. Conclusions: We first established a reference gene catalogue of chicken gut antibiotic resistomes. Our study help to improve the knowledge and understanding of chicken antibiotic resistomes for knowledge-based sustainable chicken meat production.

2021 ◽  
Vol 10 (1) ◽  
pp. 40-48
Author(s):  
O.C. Adekunle ◽  
A. Mustapha ◽  
G. Odewale ◽  
R.O. Ojedele

Introduction: Pseudomonas aeruginosa (P. aeruginosa) is a frequent nosocomial pathogen that causes severe diseases in many clinical and community settings. The objectives were to investigate the occurrence of multiple antibiotic resistant P. aeruginosa strains among clinical samples and to detect the presence of antibiotic resistance genes in the DNA molecules of the strains.Methods: Clinical specimens were collected aseptically from various human anatomical sites in five selected health institutions within Kwara State, Nigeria. Multiple drug resistance patterns of isolated micro-organisms to different antibiotics were determined using the Bauer Kirby disc diffusion technique. The DNA samples of the multiple resistant P. aeruginosa strains were extracted and subjected to Polymerase Chain Reaction (PCR) for resistance gene determination.Results: A total of 145 isolates were identified as P. aeruginosa from the clinical samples. Absolute resistance to ceftazidime, gentamicin and ceftriaxone was observed while low resistance to ciprofloxacin, piperacillin and imipenem was documented. The prevalence of bla VIM , ,bla CTX-M and blaTEM were 34.4 %, 46.7 % and 16.7 % respectively.Conclusion: This study has shown that there is a high occurrence of metallo â-lactamase- producing and antibiotic-resistant strains of P. aeruginosa in clinical specimens from the studied area. Keywords: Metallo â-lactamase enzyme, P. aeruginosa, clinical samples, antibiotic-resistance genes


Author(s):  
Catherine Adekunle ◽  
Abdulrasaq Mustapha ◽  
Gbolabo Odewale ◽  
Ojedele Richard

Background: Pseudomonas aeruginosa (P. aeruginosa) is a frequent nosocomial pathogen that causes severe diseases in many clinical and community settings. Strains of P. aeruginosa are associated with increased morbidity, mortality and healthcare costs. The rapid emergence of antimicrobial resistance among these strains is a public health crisis. Moreover, there is paucity of data on characterization of P. aeruginosa isolates from human clinical samples in Kwara State. Objectives: The objectives are to investigate the occurrence of metallo β-lactamase enzyme, multiple antibiotic resistant P. aeruginosa among clinical samples and detection of antibiotic resistance genes among them. Methods: Two hundred and thirty-five samples comprising of 145 males and 90 females human clinical specimens were collected aseptically from five selected health institutions within Kwara state, Nigeria. The samples were cultured immediately using standard microbiological procedures. Multiple drug resistance patterns of the micro-organisms to different antibiotics were determined using the Bauer Kirby disc diffusion technique. Metallo β-lactamase production was determined using E – test strip and the DNA samples of the multiple resistant P. aeruginosa strains were extracted and subjected to Polymerase Chain Reaction (PCR) for resistant genes determination. Data were subjected to descriptive statistics using Statistical Package for Social Sciences (SPSS) software. Results: A total of 145 isolates were identified for P. aeruginosa from the clinical samples .Thirty were positive for metallo β-lactamase production; 11 (8 %) males and 19 (13 %) females. Absolute resistance to ceftazidime (100 %), gentamicin (100 %), ceftriaxone (100 %) were observed while low resistance to ciprofloxacin (12.4 %), piperacillin (6.9 %) and imipenem (6.9 %). All isolates were sensitive to colistin. The prevalence of various encoding genes blaVIM, , blaCTX-M and blaTEM were 34.4 %, 46.7 %, 16.7 % and 37.7 % respectively. Conclusion: This study has shown that there is a high occurrence of metallo β-lactamase enzyme producing and antibioticresistant strains of P. aeruginosa in clinical specimens from the studied area. Necessary measures must therefore be implemented to stop the problems of this antibiotic resistance.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Stuart B. Levy ◽  
Bonnie M. Marshall

ABSTRACT Like animals and people, insects can serve as both collectors and disseminators of antibiotic resistance genes, as exquisitely demonstrated by a recent study (B. Tian, N. H. Fadhil, J. E. Powell, W. K. Kwong, and N. A. Moran, mBio 3[6]:e00377-12, doi:10.1128/mBio.00377-12, 2012). Notably, the relatively confined ecosystem of the honeybee gut demonstrates a large propensity for harboring a diverse set of tetracycline resistance genes that reveal the environmental burden resulting from the long-time selective pressures of tetracycline use in the honeybee industry. As in humans and animals, these genes have become established in the native, nonpathogenic flora of the insect gut, adding credence to the concept that commensal floras provide large reservoirs of resistance genes that can readily move into pathogenic species. The homology of these tetracycline resistance determinants with those found in tetracycline-resistant bacteria associated with animals and humans strongly suggests a dissemination of similar or identical genes through shared ecosystems. The emergence of linked coresistances (ampicillin and tetracycline) following single-antibiotic therapy mirrors reports from other studies, namely, that long-term, single-agent therapy will result in resistance to multiple drugs. These results contrast with the marked absence of diverse, single- and multiple-drug resistance genes in wild and domestic bees that are not subjected to such selective pressures. Prospective studies that simultaneously track both resistance genes and antibiotic residues will go far in resolving some of the nagging questions that cloud our understanding of antibiotic resistance dissemination.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 255
Author(s):  
Salma M. Abdelaziz ◽  
Khaled M. Aboshanab ◽  
Ibrahim S. Yahia ◽  
Mahmoud A. Yassien ◽  
Nadia A. Hassouna

In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.


2020 ◽  
Author(s):  
Tingyan Zhang ◽  
Yanfeng Lin ◽  
Zhonghong Li ◽  
Xiong Liu ◽  
Jinhui Li ◽  
...  

Abstract Background: The emergence of multi-drug resistant Citrobacter freundii poses daunting challenges to the treatment of clinical infections. The purpose of this study was to characterize the genome of a C. freundii strain with an IncX3 plasmid encoding both the blaNDM-1 and blaSHV-12 genes.Methods: Strain ZT01-0079 was isolated from a clinical urine sample. The Vitek2 system was used for identification and antimicrobial susceptibility testing. The presence of blaNDM-1 was detected by PCR and sequencing. Conjugation experiments and Southern blotting were performed to determine the transferability of the blaNDM-1- carrying plasmid. Nanopore and Illumina sequencing were performed to better understand the genomic characteristics of the strain.Results: Strain ZT01-0079 was identified as C. freundii, and the coexistence of blaNDM-1 and multiple drug resistance genes was confirmed. Electrophoresis and Southern blotting showed that blaNDM-1 was located on a ~53kb IncX3 plasmid. The NDM-1-encoding plasmid was successfully transferred at a frequency of 1.68×10−3. Both blaNDM-1 and blaSHV-12 were located on the self-transferable IncX3 plasmid.Conclusion: The rapid spread of the IncX3 plasmid highlights the importance of continuous monitoring of the prevalence of NDM-1-encoding Enterobacteriaceae. Mutations of existing carbapenem resistance genes will bring formidable challenges to clinical treatment.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmin Neves Vieira Sabino ◽  
Mateus Ferreira Santana ◽  
Linda Boniface Oyama ◽  
Fernanda Godoy Santos ◽  
Ana Júlia Silva Moreira ◽  
...  

AbstractInfections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


2002 ◽  
Vol 30 (7) ◽  
pp. 838-844 ◽  
Author(s):  
James M. Brady ◽  
Nathan J. Cherrington ◽  
Dylan P. Hartley ◽  
Susan C. Buist ◽  
Ning Li ◽  
...  

2018 ◽  
Vol 16 (3) ◽  
pp. 4-17 ◽  
Author(s):  
Olga M. Zemlyanko ◽  
Tatyana M. Rogoza ◽  
Galina A. Zhouravleva

Multiple drug resistance (MDR) to widening range of antibiotics emerging in increasing variety of pathogenic bacteria is a serious threat to the health of mankind nowadays. This is partially due to an uncontrolled usage of antibiotics not only in clinical practice, but also in various branches of agriculture. MDR is affected by two mechanisms: (1) accumulation of resistance genes as a result of intensive selection caused by antibiotics, and (2) active horizontal transfer of resistance genes. To unveil the reasons of bacterial multiresistance to antibiotics, it is necessary to understand the mechanisms of antibiotics action as well as the ways how either resistance to certain antibiotics emerge or resistance genes accumulate and transfer among bacterial strains. Current review is devoted to all these problems.


2017 ◽  
Author(s):  
Alfonso Santos-Lopez ◽  
Cristina Bernabe-Balas ◽  
Alvaro San Millan ◽  
Rafael Ortega-Huedo ◽  
Andreas Hoefer ◽  
...  

AbstractThe coexistence of multicopy plasmids is a common phenomenon. However, the evolutionary forces promoting these genotypes are poorly understood. In this study, we have analyzed multiple ColE1 plasmids (pB1000, pB1005 and pB1006) coexisting within Haemophilus influenzae RdKW20 in all possible combinations. When transformed into the naïve host, each plasmid type presented a particular copy number and produced a specific resistance profile and biological cost, whether alone or coexisting with the other plasmids. Therefore, there was no fitness advantage associated with plasmid coexistence that could explain these common plasmid associations in nature. Using experimental evolution, we showed how H. influenzae Rd was able to completely compensate the fitness cost produced by any of these plasmids. Crucially, once the bacterium has compensated for a first plasmid, the acquisition of new multicopy plasmid(s) did not produced any extra biological cost. We argue therefore that compensatory adaptation pave the way for the acquisition of multiple coexisting ColE1 plasmids.ImportanceAntibiotic resistance is a major concern for human and animal health. Plasmids play a major role in the acquisition and dissemination of antimicrobial resistance genes. In this report we investigate, for the first time, how plasmids are capable to cohabit stably in populations. This coexistence of plasmids is driven by compensatory evolution alleviating the cost of a first plasmid, which potentiates the acquisition of further plasmids at no extra cost. This phenomenon explains the high prevalence of plasmids coexistance in wild type bacteria, which generates multiresistant clones and contributes to the maintenance and spread of antibiotic resistance genes within bacterial populations.


Sign in / Sign up

Export Citation Format

Share Document