gene catalogue
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 4)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11845
Author(s):  
Maxime Borry ◽  
Alexander Hübner ◽  
Adam B. Rohrlach ◽  
Christina Warinner

DNA de novo assembly can be used to reconstruct longer stretches of DNA (contigs), including genes and even genomes, from short DNA sequencing reads. Applying this technique to metagenomic data derived from archaeological remains, such as paleofeces and dental calculus, we can investigate past microbiome functional diversity that may be absent or underrepresented in the modern microbiome gene catalogue. However, compared to modern samples, ancient samples are often burdened with environmental contamination, resulting in metagenomic datasets that represent mixtures of ancient and modern DNA. The ability to rapidly and reliably establish the authenticity and integrity of ancient samples is essential for ancient DNA studies, and the ability to distinguish between ancient and modern sequences is particularly important for ancient microbiome studies. Characteristic patterns of ancient DNA damage, namely DNA fragmentation and cytosine deamination (observed as C-to-T transitions) are typically used to authenticate ancient samples and sequences, but existing tools for inspecting and filtering aDNA damage either compute it at the read level, which leads to high data loss and lower quality when used in combination with de novo assembly, or require manual inspection, which is impractical for ancient assemblies that typically contain tens to hundreds of thousands of contigs. To address these challenges, we designed PyDamage, a robust, automated approach for aDNA damage estimation and authentication of de novo assembled aDNA. PyDamage uses a likelihood ratio based approach to discriminate between truly ancient contigs and contigs originating from modern contamination. We test PyDamage on both on simulated aDNA data and archaeological paleofeces, and we demonstrate its ability to reliably and automatically identify contigs bearing DNA damage characteristic of aDNA. Coupled with aDNA de novo assembly, Pydamage opens up new doors to explore functional diversity in ancient metagenomic datasets.


2021 ◽  
Author(s):  
Jintao Yang ◽  
Cuihong Tong ◽  
Danyu Xiao ◽  
Longfei Xie ◽  
Ruonan Zhao ◽  
...  

Abstract Background: The chicken gut microbiota, as a reservoir of antibiotic resistance genes (ARGs), poses a high risk to humans and animals worldwide. Yet a comprehensive exploration of the chicken gut antibiotic resistomes remains incomplete. Results: In this study, we established the largest chicken gut resistance gene catalogue to date through metagenomic analysis of 629 chicken gut samples. We found significantly higher abundance of ARGs in the Chinese chicken gut than that in the Europe. tetX, mcr, and blaNDM, the genes resistant to antibiotics of last resort for human and animal health, were frequently detected in the Chinese chicken gut. The abundance of ARGs was linearly correlated with that of mobile genetic elements (MGEs). The host-tracking analysis identified Escherichia, Enterococcus, Staphylococcus, Klebsiella, and Lactobacillus as the major ARG hosts. Especially, Lactobacillus, an intestinal probiotic, carried multiple drug resistance genes, and was proportional to ISLhe63, highlighting its potential risk in agricultural production processes. Conclusions: We first established a reference gene catalogue of chicken gut antibiotic resistomes. Our study help to improve the knowledge and understanding of chicken antibiotic resistomes for knowledge-based sustainable chicken meat production.


2021 ◽  
Author(s):  
Maxime Borry ◽  
Alexander Huebner ◽  
Adam B Rohrlach ◽  
Christina G Warinner

DNA de novo assembly can be used to reconstruct longer stretches of DNA (contigs), including genes and even genomes, from short DNA sequencing reads. Applying this technique to metagenomic data derived from archaeological remains, such as paleofeces and dental calculus, we can investigate past microbiome functional diversity that may be absent or underrepresented in the modern microbiome gene catalogue. However, compared to modern samples, ancient samples are often burdened with environmental contamination, resulting in metagenomic datasets that represent mixtures of ancient and modern DNA. The ability to rapidly and reliably establish the authenticity and integrity of ancient samples is essential for ancient DNA studies, and the ability to distinguish between ancient and modern sequences is particularly important for ancient microbiome studies. Characteristic patterns of ancient DNA damage, namely DNA fragmentation and cytosine deamination (observed as C-to-T transitions) are typically used to authenticate ancient samples and sequences. However, existing tools for inspecting and filtering aDNA damage either compute it at the read level, which leads to high data loss and lower quality when used in combination with de novo assembly, or require manual inspection, which is impractical for ancient assemblies that typically contain tens to hundreds of thousands of contigs. To address these challenges, we designed PyDamage, a robust, automated approach for aDNA damage estimation and authentication of de novo assembled aDNA. PyDamage uses a likelihood ratio based approach to discriminate between truly ancient contigs and contigs originating from modern contamination. We test PyDamage on both simulated, and empirical aDNA data from archaeological paleofeces, and we demonstrate its ability to reliably and automatically identify contigs bearing DNA damage characteristic of aDNA. Coupled with aDNA de novo assembly, PyDamage opens up new doors to explore functional diversity in ancient metagenomic datasets.


GigaScience ◽  
2020 ◽  
Vol 9 (12) ◽  
Author(s):  
Mathieu Rousseau-Gueutin ◽  
Caroline Belser ◽  
Corinne Da Silva ◽  
Gautier Richard ◽  
Benjamin Istace ◽  
...  

Abstract Background The combination of long reads and long-range information to produce genome assemblies is now accepted as a common standard. This strategy not only allows access to the gene catalogue of a given species but also reveals the architecture and organization of chromosomes, including complex regions such as telomeres and centromeres. The Brassica genus is not exempt, and many assemblies based on long reads are now available. The reference genome for Brassica napus, Darmor-bzh, which was published in 2014, was produced using short reads and its contiguity was extremely low compared with current assemblies of the Brassica genus. Findings Herein, we report the new long-read assembly of Darmor-bzh genome (Brassica napus) generated by combining long-read sequencing data and optical and genetic maps. Using the PromethION device and 6 flowcells, we generated ∼16 million long reads representing 93× coverage and, more importantly, 6× with reads longer than 100 kb. This ultralong-read dataset allows us to generate one of the most contiguous and complete assemblies of a Brassica genome to date (contig N50 > 10 Mb). In addition, we exploited all the advantages of the nanopore technology to detect modified bases and sequence transcriptomic data using direct RNA to annotate the genome and focus on resistance genes. Conclusion Using these cutting-edge technologies, and in particular by relying on all the advantages of the nanopore technology, we provide the most contiguous Brassica napus assembly, a resource that will be valuable to the Brassica community for crop improvement and will facilitate the rapid selection of agronomically important traits.


Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Célio Dias Santos-Júnior ◽  
Hugo Sarmento ◽  
Fernando Pellon de Miranda ◽  
Flávio Henrique-Silva ◽  
Ramiro Logares

Abstract Background The Amazon River is one of the largest in the world and receives huge amounts of terrestrial organic matter (TeOM) from the surrounding rainforest. Despite this TeOM is typically recalcitrant (i.e. resistant to degradation), only a small fraction of it reaches the ocean, pointing to a substantial TeOM degradation by the river microbiome. Yet, microbial genes involved in TeOM degradation in the Amazon River were barely known. Here, we examined the Amazon River microbiome by analysing 106 metagenomes from 30 sampling points distributed along the river. Results We constructed the Amazon River basin Microbial non-redundant Gene Catalogue (AMnrGC) that includes ~ 3.7 million non-redundant genes, affiliating mostly to bacteria. We found that the Amazon River microbiome contains a substantial gene-novelty compared to other relevant known environments (rivers and rainforest soil). Genes encoding for proteins potentially involved in lignin degradation pathways were correlated to tripartite tricarboxylates transporters and hemicellulose degradation machinery, pointing to a possible priming effect. Based on this, we propose a model on how the degradation of recalcitrant TeOM could be modulated by labile compounds in the Amazon River waters. Our results also suggest changes of the microbial community and its genomic potential along the river course. Conclusions Our work contributes to expand significantly our comprehension of the world’s largest river microbiome and its potential metabolism related to TeOM degradation. Furthermore, the produced gene catalogue (AMnrGC) represents an important resource for future research in tropical rivers.


2020 ◽  
Author(s):  
Célio Dias Santos Júnior ◽  
Hugo Sarmento ◽  
Fernando Pellon de Miranda ◽  
Flávio Henrique-Silva ◽  
Ramiro Logares

Abstract Background: The Amazon River is one of the largest in the world and receives huge amounts of terrestrial organic matter (TeOM) from the surrounding rainforest. Despite this TeOM is typically recalcitrant (i.e. resistant to degradation), only a small fraction of it reaches the ocean, pointing to a substantial TeOM degradation by the river microbiome. Yet, microbial genes involved in TeOM degradation in the Amazon River were barely known. Here, we examined the Amazon River microbiome by analyzing 106 metagenomes from 30 sampling points distributed along the river.Results: We constructed the Amazon River basin Microbial non-redundant Gene Catalogue (AMnrGC) that includes ~3.7 million non-redundant genes, affiliating mostly to bacteria. We found that the Amazon River microbiome contains a substantial gene-novelty compared to other relevant known environments (rivers and rainforest soil). Genes encoding for proteins potentially involved in lignin degradation pathways were correlated to tripartite tricarboxylates transporters and hemicellulose degradation machinery, pointing to a possible priming effect. Based on this, we propose a model on how the degradation of recalcitrant TeOM could be modulated by labile compounds in the Amazon River waters. Our results also suggest changes of the microbial community and its genomic potential along the river course.Conclusions: Our work contributes to expand significantly our comprehension of the world’s largest river microbiome and its potential metabolism related to TeOM degradation. Furthermore, the produced gene catalogue (AMnrGC) represents an important resource for future research in tropical rivers.


Author(s):  
Mathieu Rousseau-Gueutin ◽  
Caroline Belser ◽  
Corinne Da Silva ◽  
Gautier Richard ◽  
Benjamin Istace ◽  
...  

AbstractBackgroundThe combination of long-reads and long-range information to produce genome assemblies is now accepted as a common standard. This strategy not only allow to access the gene catalogue of a given species but also reveals the architecture and organisation of chromosomes, including complex regions like telomeres and centromeres. The Brassica genus is not exempt and many assemblies based on long reads are now available. The reference genome for Brassica napus, Darmor-bzh, which was published in 2014, has been produced using short-reads and its contiguity was extremely low if compared to current assemblies of the Brassica genus.FindingsHere, we report the new long-reads assembly of Darmor-bzh genome (Brassica napus) generated by combining long-reads sequencing data, optical and genetic maps. Using the PromethION device and six flowcells, we generated about 16M long-reads representing 93X coverage and more importantly 6X with reads longer than 100Kb. This ultralong-reads dataset allows us to generate one of the most contiguous and complete assembly of a Brassica genome to date (contigs N50 > 10Mb). In addition, we exploited all the advantages of the nanopore technology to detect modified bases and sequence transcriptomic data using direct RNA to annotate the genome and focus on resistance genes.ConclusionUsing these cutting edge technologies, and in particular by relying on all the advantages of the nanopore technology, we provide the most contiguous Brassica napus assembly, a resource that will be valuable for the Brassica community for crop improvement and will facilitate the rapid selection of agronomically important traits.


2020 ◽  
Author(s):  
Célio Dias Santos Júnior ◽  
Hugo Sarmento ◽  
Fernando Pellon de Miranda ◽  
Flávio Henrique-Silva ◽  
Ramiro Logares

Abstract Background The Amazon River is one of the largest in the world and receives huge amounts of terrestrial organic matter (TeOM) from the surrounding rainforest. Despite this TeOM is typically recalcitrant (i.e. resistant to degradation), only a small fraction of it reaches the ocean, pointing to a substantial TeOM degradation by the river microbiome. Yet, microbial genes involved in TeOM degradation in the Amazon River were barely known. Here, we examined the Amazon River microbiome by analyzing 106 metagenomes from 30 sampling points distributed along the river.Results We constructed the Amazon River basin Microbial non-redundant Gene Catalogue (AMnrGC) that includes ~ 3.7 million non-redundant genes, affiliating mostly to bacteria. We found that the Amazon River microbiome contains a substantial gene-novelty compared to other relevant known environments (rivers and rainforest soil). Genes encoding for proteins potentially involved in lignin degradation pathways were correlated to tripartite tricarboxylates transporters and hemicellulose degradation machinery, pointing to a possible priming effect. Based on this, we propose a model on how the degradation of recalcitrant TeOM could be modulated by labile compounds in the Amazon River waters. Our results also suggest changes of the microbial community and its genomic potential along the river course.Conclusions Our work contributes to expand significantly our comprehension of the world’s largest river microbiome and its potential metabolism related to TeOM degradation. Furthermore, the produced gene catalogue (AMnrGC) represents an important resource for future research in tropical rivers.


2020 ◽  
Author(s):  
Shenghui Li ◽  
Siyi Zhang ◽  
Bo Li ◽  
Shanshan Sha ◽  
Jian Kang ◽  
...  

AbstractThe laboratorial mouse harbors a unique gut microbiota with potential value for human microbiota-associated studies. Mouse gut microbiota has been explored at the genus and species levels, but features rarely been showed at the strain level. The identification of 833,051 and 658,438 nonredundant genes of faeces and gut content samples from the laboratorial C57/BL mice showed over half of these genes were newly found compared to the previous mouse gut microbial gene catalogue. Metagenome-assembled genomes (MAGs) was used to reconstruct 46 nonredundant MAGs belonging to uncultured specieses. These MAGs included members across all phyla in mouse gut (i.e. Firmicutes, Bacteroidetes, Proteobacteria, Deferribacteres, Verrucomicrobia, and Tenericutes) and allowed a strain-level delineating of the mouse gut microbiota. Comparison of MAGs with human gut colonies revealed distinctive genomic and functional characteristics of mouse’s Bacteroidetes and Firmicutes strains. Genomic characteristics of rare phyla in mouse gut microbiota were demonstrated by MAG approach, including strains of Mucispirillum schaedleri, Parasutterella excrementihominis, Helicobacter typhlonius, and Akkermansia muciniphila.ImportanceThe identification of nonredundant genes suggested the existence of unknown microbes in the mouse gut samples. The metagenome-assembled genomes (MAGs) instantiated the specificity of mouse gut species and revealed an intestinal microbial correlation between mouse and human. The cultivation of faeces and gut contents sample validated the existence of MAGs and estimate their accuracy. Full-length 16S ribosomal RNA gene sequencing enabled taxonomic characterization. This study highlighted a unique ecosystem in the gut of laboratorial mice that obviously differed with the human gut flora at the strain level. The outcomes may be beneficial to researches based on laboratorial mouse models.


Author(s):  
Live H. Hagen ◽  
Charles G. Brooke ◽  
Claire Shaw ◽  
Angela D. Norbeck ◽  
Hailan Piao ◽  
...  

AbstractThe rumen harbors a complex microbial mixture of archaea, bacteria, protozoa and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacterial populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen microbiota. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to degradation, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated for 48 hours in nylon bags within the rumen of cannulated dairy cows. Across a gene catalogue covering anaerobic rumen bacteria, fungi and viruses, a significant portion of the detected proteins originated from fungal populations. Intriguingly, the carbohydrate-active enzyme (CAZyme) profile suggested a domain-specific functional specialization, with bacterial populations primarily engaged in the degradation of polysaccharides such as hemicellulose, whereas fungi were inferred to target recalcitrant cellulose structures via the detection of a number of endo- and exo-acting enzymes belonging to the glycoside hydrolase (GH) family 5, 6, 8 and 48. Notably, members of the GH48 family were amongst the highest abundant CAZymes and detected representatives from this family also included dockerin domains that are associated with fungal cellulosomes. A eukaryote-selected metatranscriptome further reinforced the contribution of uncultured fungi in the ruminal degradation of recalcitrant fibers. These findings elucidate the intricate networks of in situ recalcitrant fiber deconstruction, and importantly, suggests that the anaerobic rumen fungi contribute a specific set of CAZymes that complement the enzyme repertoire provided by the specialized plant cell wall degrading rumen bacteria.


Sign in / Sign up

Export Citation Format

Share Document