scholarly journals Is preoperative glenoid bone mineral density associated with aseptic glenoid implant loosening in anatomic total shoulder arthroplasty?

2020 ◽  
Author(s):  
Sandrine Mariaux ◽  
Raphaël Obrist ◽  
Alain Farron ◽  
Fabio Becce ◽  
Alexandre Terrier

Abstract Background: Aseptic loosening of glenoid implants is the primary revision cause in anatomic total shoulder arthroplasty (aTSA). While supported by biomechanical studies, the impact of glenoid bone quality, more specifically bone mineral density (BMD), on aseptic glenoid loosening remains unclear. We hypothesized that lower preoperative glenoid BMD was associated with aseptic glenoid implant loosening in aTSA.Methods: We retrospectively included 93 patients (69 females and 24 males; mean age, 69.2 years) who underwent preoperative non-arthrographic shoulder computed tomography (CT) scans and aTSA between 2002 and 2014. Preoperative glenoid BMD (CT numbers in Hounsfield unit) was measured in 3D using a reliable semi-automated quantitative method, in the following six contiguous volumes of interest (VOI): cortical, subchondral cortical plate (SC), subchondral trabecular, and three successive adjacent layers of trabecular bone. Univariate Cox regression was used to estimate the impact of preoperative glenoid BMD on aseptic glenoid implant loosening. We further compared 26 aseptic glenoid loosening patients with 56 matched control patients.Results: Glenoid implant survival rates were 89% (95% confidence interval CI, 81%-96%) and 57% (41%-74%) at 5 and 10 years, respectively. Hazard ratios for the different glenoid VOIs ranged between 0.998 and 1.004 (95% CI [0.996, 1.007], p≥0.121). Only the SC VOI showed significantly lower CTn in the loosening group (622±104 HU) compared with the control group (658±88 HU) (p=0.048), though with a medium effect size (d=0.42). There were no significant differences in preoperative glenoid BMD in any other VOI between patients from the loosening and control groups.Conclusions: Although the preoperative glenoid BMD was statistically significantly lower in the SC region of patients with aseptic glenoid implant loosening compared with controls, this single-VOI difference was only moderate. We are thus unable to prove that lower preoperative glenoid BMD is clearly associated with aseptic glenoid implant loosening in aTSA. However, due to its proven biomechanical role in glenoid implant survival, we recommend extending this study to larger CT datasets to further assess and better understand the impact of preoperative glenoid BMD on glenoid implant loosening/survival and aTSA outcome.Trial registration: Retrospectively registered

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sandrine Mariaux ◽  
Raphaël Obrist ◽  
Alain Farron ◽  
Fabio Becce ◽  
Alexandre Terrier

Abstract Background Aseptic loosening of glenoid implants is the primary revision cause in anatomic total shoulder arthroplasty (aTSA). While supported by biomechanical studies, the impact of glenoid bone quality, more specifically bone mineral density (BMD), on aseptic glenoid loosening remains unclear. We hypothesized that lower preoperative glenoid BMD was associated with aseptic glenoid implant loosening in aTSA. Methods We retrospectively included 93 patients (69 females and 24 males; mean age, 69.2 years) who underwent preoperative non-arthrographic shoulder computed tomography (CT) scans and aTSA between 2002 and 2014. Preoperative glenoid BMD (CT numbers in Hounsfield unit) was measured in 3D using a reliable semi-automated quantitative method, in the following six contiguous volumes of interest (VOI): cortical, subchondral cortical plate (SC), subchondral trabecular, and three successive adjacent layers of trabecular bone. Univariate Cox regression was used to estimate the impact of preoperative glenoid BMD on aseptic glenoid implant loosening. We further compared 26 aseptic glenoid loosening patients with 56 matched control patients. Results Glenoid implant survival rates were 89% (95% confidence interval CI, 81–96%) and 57% (41–74%) at 5 and 10 years, respectively. Hazard ratios for the different glenoid VOIs ranged between 0.998 and 1.004 (95% CI [0.996, 1.007], p≥0.121). Only the SC VOI showed significantly lower CTn in the loosening group (622±104 HU) compared with the control group (658±88 HU) (p=0.048), though with a medium effect size (d=0.42). There were no significant differences in preoperative glenoid BMD in any other VOI between patients from the loosening and control groups. Conclusions Although the preoperative glenoid BMD was statistically significantly lower in the SC region of patients with aseptic glenoid implant loosening compared with controls, this single-VOI difference was only moderate. We are thus unable to prove that lower preoperative glenoid BMD is clearly associated with aseptic glenoid implant loosening in aTSA. However, due to its proven biomechanical role in glenoid implant survival, we recommend extending this study to larger CT datasets to further assess and better understand the impact of preoperative glenoid BMD on glenoid implant loosening/survival and aTSA outcome.


2020 ◽  
Author(s):  
Sandrine Mariaux ◽  
Raphaël Obrist ◽  
Alain Farron ◽  
Fabio Becce ◽  
Alexandre Terrier

Abstract Background: Aseptic loosening of glenoid implants is the primary revision cause in anatomic total shoulder arthroplasty (aTSA). While supported by biomechanical studies, the impact of glenoid bone quality, more specifically bone mineral density (BMD), on aseptic glenoid loosening remains unclear. We hypothesized that lower preoperative glenoid BMD was associated with and a risk factor for aseptic glenoid implant loosening in aTSA.Methods: We retrospectively included 93 patients (69 females and 24 males; mean age, 69.2 years) who underwent preoperative non-arthrographic shoulder computed tomography (CT) scans and aTSA between 2002 and 2014. Preoperative glenoid BMD (CT numbers in Hounsfield unit) was measured in 3D using a reliable semi-automated quantitative method, in the following six contiguous volumes of interest (VOI): cortical, subchondral cortical plate (SC), subchondral trabecular, and three successive adjacent layers of trabecular bone. Univariate Cox regression was used to estimate the impact of preoperative glenoid BMD on aseptic glenoid implant loosening. We further compared 26 aseptic glenoid loosening patients with 56 matched control patients.Results: Glenoid implant survival rates were 89% (95% confidence interval CI, 81%-96%) and 57% (41%-74%) at 5 and 10 years, respectively. Hazard ratios for the different glenoid VOIs ranged between 0.998 and 1.004 (95% CI [0.996, 1.007], p≥0.121). Only the SC VOI showed significantly lower CTn in the loosening group (622±104 HU) compared with the control group (658±88 HU) (p=0.048), though with a medium effect size (d=0.42). There were no significant differences in preoperative glenoid BMD in any other VOI between patients from the loosening and control groups.Conclusions: Although the preoperative glenoid BMD was statistically significantly lower in the SC region of patients with aseptic glenoid implant loosening compared with controls, this single-VOI difference was only moderate. We are thus unable to prove that lower preoperative glenoid BMD is clearly associated with and a risk factor for aseptic glenoid implant loosening in aTSA. However, due to its proven biomechanical role in glenoid implant survival, we recommend extending this study to larger CT datasets to further assess and better understand the real impact of preoperative glenoid BMD on glenoid implant loosening/survival and aTSA outcome overall.Trial registration: Retrospectively registered


Author(s):  
MINAKSHI JOSHI ◽  
SHRADHA BISHT ◽  
MAMTA F. SINGH

Thyroid hormone serves as an indispensable component for the optimum functioning of various biological systems. They curb body’s metabolism, regulates the estrogen level, regulates bone turnover, essential for skeletal development and mineralization. Within the scope of knowledge, it is intimately familiar that thyroid disorders have widespread systemic manifestations, among which in hypothyroidism, even though elevated TSH (thyroid-stimulating hormone) may reduce estrogen level which in turn stimulates osteoclasts and thus cause osteoporosis, while hyperthyroidism accelerates bone turnover. Hypothyroidism does not directly interfere with the skeletal integrity, but treatment with levothyroxine for the suppression of TSH to bring the hypothyroid patient to euthyroid state for a long haul; lead to simultaneous reduction in bone mass and in (bone mineral density) BMD. After the initial relevation of the correlation between thyroid disorders and osteoporosis in numerous studies have emphasized that both hypo and hyperthyroidism either directly or indirectly affects the bone mineral density or leads to the progression of osteoporosis. Therefore the present study is aimed and so designed to review all the possible associations between them and the impact of thyroid disorders on estrogen level and bone mineral density. The main findings of this review indicate that both excesses as well as deficiency of thyroid hormone can be potentially deleterious for bone tissue.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefana Catalina Bilha ◽  
Letitia Leustean ◽  
Cristina Preda ◽  
Dumitru D. Branisteanu ◽  
Laura Mihalache ◽  
...  

Abstract Background Despite the increased fracture risk, bone mineral density (BMD) is variable in type 1 (T1D) and type 2 (T2D) diabetes mellitus. We aimed at comparing independent BMD predictors in T1D, T2D and control subjects, respectively. Methods Cross-sectional case-control study enrolling 30 T1D, 39 T2D and 69 age, sex and body mass index (BMI) – matched controls that underwent clinical examination, dual-energy X-ray absorptiometry (BMD at the lumbar spine and femoral neck) and serum determination of HbA1c and parameters of calcium and phosphate metabolism. Results T2D patients had similar BMD compared to T1D individuals (after adjusting for age, BMI and disease duration) and to matched controls, respectively. In multiple regression analysis, diabetes duration – but not HbA1c- negatively predicted femoral neck BMD in T1D (β= -0.39, p = 0.014), while BMI was a positive predictor for lumbar spine (β = 0.46, p = 0.006) and femoral neck BMD (β = 0.44, p = 0.007) in T2D, besides gender influence. Age negatively predicted BMD in controls, but not in patients with diabetes. Conclusions Long-standing diabetes and female gender particularly increase the risk for low bone mass in T1D. An increased body weight partially hinders BMD loss in T2D. The impact of age appears to be surpassed by that of other bone regulating factors in both T1D and T2D patients.


Author(s):  
Luís Alberto Gobbo ◽  
Pedro B. Júdice ◽  
Megan Hetherington-Rauth ◽  
Luís B. Sardinha ◽  
Vanessa Ribeiro Dos Santos

Aging causes some unfavorable morphological and functional changes, such as the decline in bone mineral density (BMD) and physical function. Moderate-to-vigorous physical activity (MVPA) and sedentary time seem to be related with these alterations, but the impact of distinct patterns remains unclear. The aim of this study was to cross-sectionally and prospectively assess the association between objectively measured MVPA and sedentary patterns (bouts and breaks) with BMD and physical function in older adults. The study considered 151 Brazilians (aged ≥ 60 years), out of which 68 participants completed 2-year follow-up measurements. MVPA and sedentary patterns were measured by means of accelerometry, BMD—(total proximal femur and lumbar spine (L1-L4)) by means of dual-energy X-ray absorptiometry (DXA), and physical function—by means of physical tests. In older women, sedentary bouts >60 min were inversely associated with handgrip strength (β = −2.03, 95% CI: from −3.43 to −0.63). The prospective analyses showed that changes in sedentary bouts (20 to 30 min and >60 min) were inversely associated with changes in the lumbar spine’s BMD (β = −0.01, 95% CI: from −0.01 to −0.00 and β = −0.03, 95% CI: from −0.06 to −0.01) and the lumbar spine’s T-score (β = −0.06, 95% CI: from −0.10 to −0.01 and β = −0.27, 95% CI: from −0.49 to −0.04), respectively. In older women, sedentary patterns are cross-sectionally associated with handgrip strength and prospectively associated with BMD independent of MVPA.


2020 ◽  
Vol 21 (18) ◽  
pp. 6670
Author(s):  
Jordan Marcano Anaya ◽  
Wendy B. Bollag ◽  
Mark W. Hamrick ◽  
Carlos M. Isales

Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with aging and decreased capacity for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes, promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review available data on the impact of these tryptophan breakdown products on the body in general and, when available, the existing evidence of their impact on bone. A number of tryptophan metabolites (e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA), and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk. Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require further research as they are potential therapeutic targets. The current review is meant as a brief overview of existing English language literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems. The search terms used for a Medline database search were: kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document