Ecological Performance of Multifunctional Pesticide Tolerant Strains of Mesorhizobium Sp. In Chickpea With Recommended Pendimethalin, Ready-mix of Pendimethalin and Imazethpyr, Carbendazim and Chlorpyrifos Application

Author(s):  
Pallavi Mansotra ◽  
Poonam Sharma ◽  
Asmita Sirari ◽  
Navneet Aggarwal

Abstract The present study was designed to screen the Mesorhizobium strains (50) for tolerance in four recommended pesticides for chickpea. It was followed by in-vitro development of robust pesticide tolerant strains by growth in pesticides amended media over several generations. Further, verification of the multifunctional traits of pesticide tolerant mesorhizobia under pesticide stress was conducted in-vitro. Among different pesticides, significantly high tolerance in Mesorhizobium strains was observed with recommended doses of pendimethalin (37%) and ready-mix (36%) followed by chlorpyrifos (31%) and carbendazim (30%), on an overall basis. Based on multifunctional traits, Mesorhizobium strains viz. MR2, MR17 and recommended MR33 were the most promising. Ecological performance of the potential Mesorhizobium strains alone and in dual-inoculation with recommended PGP rhizobacterium strain RB-1 (Pseudomonas argenttinensis JX239745.1) was further analyzed in field following standard pesticide application in PBG-7 and GPF-2 chickpea varieties for two consecutive rabi seasons (2015 and 2016). Dual-inoculant treatments; recommended RB-1+MR33 (4.1%) and RB-1+MR2 (3.8%) significantly increased the grain yield over Mesorhizobium alone treatments viz MR33 and MR2, respectively. Grain yield in PBG7 variety was significantly affected (7.3%) by the microbial inoculant treatments over GPF2 variety. Therefore, the potential pesticide tolerant strains MR2 and MR33 can be further explored as compatible dual-inoculants with recommended RB-1 for chickpea under environmentally stressed conditions (pesticide application) at multiple locations. Our approach using robust multifunctional pesticide tolerant Mesorhizobium for bio-augmentation of chickpea with might be helpful in the formulation of effective bio-inoculants consortia in establishing successful chickpea–Mesorhizobium symbiosis.

2002 ◽  
Vol 78 ◽  
pp. S180-S181
Author(s):  
John Zhang ◽  
Yi Ming Shu ◽  
Lewis C Krey ◽  
Hui Liu ◽  
Guang Lun Zhuang ◽  
...  

2021 ◽  
pp. 106767
Author(s):  
Gizele A.L. Silva ◽  
Luana B. Araújo ◽  
Larissa C.R. Silva ◽  
Bruna B. Gouveia ◽  
Ricássio S. Barberino ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8367
Author(s):  
Hien Lau ◽  
Shiri Li ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Mohammadreza Mohammadi ◽  
...  

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8–15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


In Vitro ◽  
1977 ◽  
Vol 13 (8) ◽  
pp. 484-489 ◽  
Author(s):  
Chi-Chang Chen

2009 ◽  
Vol 26 (1) ◽  
pp. 42-47
Author(s):  
Hitoshi Ushijima ◽  
Kiyoshi Akiyama ◽  
Toshio Tajima

Sign in / Sign up

Export Citation Format

Share Document