The barley leaf rust resistance gene Rph3 encodes a putative executor protein
Abstract Host resistance is considered the most effective means to control plant diseases; however, individually deployed resistance genes are often rapidly overcome by pathogen adaptation. Combining multiple effective resistance genes is the optimal approach to durable resistance, but the lack of functional markers for resistance genes has hampered implementation. Leaf rust, caused by Puccinia hordei, is an economically significant disease of barley, but only a few major Resistance genes to P. hordei (Rph) have been cloned. In this study, gene Rph3 was isolated by positional cloning and confirmed by mutational analysis and transgenic complementation. The Rph3 gene, which originated from wild barley and was first introgressed into cultivated Egyptian germplasm, encodes a unique transmembrane resistance protein that differs from all known plant disease resistance proteins at the amino acid sequence level. Genetic profiles of diverse accessions indicated limited genetic diversity in Rph3 in domesticated germplasm, and higher diversity in wild barley from the Eastern Mediterranean region. Expression profiling using P. hordei isolates with contrasting pathogenicity for the Rph3 host locus showed that the Rph3 gene was expressed only in interactions with Rph3-avirulent isolates, a phenomenon also observed for transcription activator-like effector-dependent genes known as executors conferring resistance to Xanthomonas spp. Like the known transmembrane executors such as Bs3 and Xa7 heterologous expression of Rph3 in N. benthamiana induced a cell death response. Given that Rph3 shares several features with executor genes, it seems likely that P. hordei contains effectors similar to the transcription activator-like effectors that target host executor genes. The isolation of Rph3 highlights convergent evolutionary processes in diverse plant-pathogen interaction systems, where similar defence mechanisms evolved independently in monocots and dicots and provide evidence for executor genes in the Triticeae tribe.