Abstract
BackgroundTo avoid and delay the resistance breakdown of varieties against pathogens and insect pests, broad-spectrum and durable resistance by multiple genes pyramiding are expected to be one of the practical approaches. The indica rice variety PTB33 (Oryza sativa L.) shows high and durable resistance to the brown planthopper (BPH, Nilaparvata lugens Stål). However, this variety gradually lost its resistance against the recent virulence development of BPH. However, breakdown processes are not fully elucidated by individual genetic loci. ResultsEffective QTLs were explored across the whole genomic region against four BPH populations collected in Japan in 1988, 1989, 1999, and 2013 using high-density single-nucleotide polymorphism (SNP) markers obtained by genotyping-by-sequencing. Among seven genomic regions of PTB33 likely conferring BPH resistance, four QTLs, qFSA4a, qFSA6, qFSA11, and qFSA12 on chromosomes 4, 6, 11, and 12, respectively, were validated as BPH resistance QTLs. The PTB33 alleles at the four QTLs positively contributed to BPH resistance. Infestation of monogenic segregating lines showed that the PTB33 alleles at qFSA11, qFSA12, and qFSA4a lost resistance effects at least in 1989, 1999, and 2013, respectively. ConclusionThis study showed breakdown of durable resistance in PTB33 was explained by step-by-step losses of genetic effects at each resistance locus and probably multiple acquisitions of virulence genes in BPH in a gene-by-gene specific manner.