scholarly journals Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism

2020 ◽  
Author(s):  
Rubén González ◽  
Anamarija Butkovic ◽  
Francisco Escaray ◽  
Javier Martínez-Latorre ◽  
Ízan Melero ◽  
...  

Abstract Environmental conditions are an important factor driving pathogens evolution. Here we explore the effects of drought stress in plant virus evolution. We evolved a potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher tolerance to drought to infected plants. By contrast, non-significant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, being the magnitude of such benefit a selectable trait.

2021 ◽  
Vol 118 (6) ◽  
pp. e2020990118 ◽  
Author(s):  
Rubén González ◽  
Anamarija Butković ◽  
Francisco J. Escaray ◽  
Javier Martínez-Latorre ◽  
Ízan Melero ◽  
...  

Environmental conditions are an important factor driving pathogens’ evolution. Here, we explore the effects of drought stress in plant virus evolution. We evolved turnip mosaic potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher drought tolerance to infected plants. By contrast, nonsignificant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, with the magnitude of such benefit being a selectable trait.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsayed Mansour ◽  
Hany A. M. Mahgoub ◽  
Samir A. Mahgoub ◽  
El-Sayed E. A. El-Sobky ◽  
Mohamed I. Abdul-Hamid ◽  
...  

AbstractWater deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


1993 ◽  
Vol 73 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Allen G. Good ◽  
James L. Maclagan

The physiological responses of different species of Brassica to induced drought stress were studied by analysing the relationships between relative water content, leaf water potential and leaf osmotic potential during the onset of drought stress. These data indicate that while there was a decrease in leaf osmotic potential with the onset of drought stress, this did not result from a net increase in solutes. Therefore, these genotypes of Brassica do not appear able to osmoregulate under these drought conditions. Key words: Brassica, drought, osmoregulation, water stress


Author(s):  
Xiao-fei Cheng ◽  
Nasar Virk ◽  
Hui-zhong Wang

2020 ◽  
Vol 89 (2) ◽  
Author(s):  
Mehmet Emre Erez ◽  
Behçet İnal ◽  
Muhemet Zeki Karipçin ◽  
Serdar Altıntaş

Drought conditions may have direct or indirect effects on plant physiology, biochemistry, and molecular characteristics. The purpose of this study was to investigate the effects of drought stress on the physiological, biochemical, and molecular responses of three different watermelon cultivars with varying levels of drought tolerance (24: drought resistant, CS: moderately tolerant, and 98: drought sensitive). The cultivars exhibited different responses to cope with water stress according to their tolerance level. Drought induced significant reductions in chlorophyll <em>a</em>, total chlorophyll and carotenoid content and glutation reductase and ascorbate peroxidase activity in the sensitive cultivar unlike in the moderately tolerant and drought resistant cultivars. Additionally, the expression levels of <em>NAC1</em>, <em>NAC2</em>, <em>ORE1</em>, <em>WRKY24</em>, <em>SAG12</em>, <em>SAG13</em>, <em>KCS2</em>, <em>CER1</em>, <em>DREB2A</em>, <em>LTP3</em>, <em>SWEET15</em>, and <em>PYL9</em> genes were measured using qRT-PCR. The expression ratios of the genes significantly varied depending on the gene location and on the tolerance of the cultivars. Results showed that the physiology and biochemical and molecular pathways of tolerant cultivars change to adapt to drought conditions. Therefore, the drought-resistant cultivar copes with drought stress by increasing proline content and antioxidant enzyme activities, as well as by increasing the expression of specific genes.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiabin Shen ◽  
Bo Lv ◽  
Liqiong Luo ◽  
Jianmei He ◽  
Chanjuan Mao ◽  
...  

Abstract Plants can perceive environmental changes and respond to external stressors. Here, we show that OsNAC2, a member of the NAC transcription factor family, was strongly induced by ABA and osmotic stressors such as drought and high salt. With reduced yields under drought conditions at the flowering stage, OsNAC2 overexpression lines had lower resistance to high salt and drought conditions. RNAi plants showed enhanced tolerance to high salinity and drought stress at both the vegetative and flowering stages. Furthermore, RNAi plants had improved yields after drought stress. A microarray assay indicated that many ABA-dependent stress-related genes were down-regulated in OsNAC2 overexpression lines. We further confirmed that OsNAC2 directly binds the promoters of LATE EMBRYOGENESIS ABUNDANT 3 (OsLEA3) and Stress-Activated Protein Kinases 1 (OsSAPK1), two marker genes in the abiotic stress and ABA response pathways, respectively. Our results suggest that in rice OsNAC2 regulates both abiotic stress responses and ABA-mediated responses, and acts at the junction between the ABA and abiotic stress pathways.


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 148-152 ◽  
Author(s):  
Bingru Huang

Drought is a major factor limiting the growth of turfgrasses in many areas. The functional relationship of drought stress and accumulation of various ions in turfgrasses is not well understood. The objective of this study was to investigate the effects of drought on root growth and accumulation of several major nutrients in three tall fescue (Festuca arundinacea Schreb.) cultivars varying in drought tolerance (Falcon II = Houndog V > Rebel Jr). Grasses were grown in well-watered or drying (nonirrigated) soil for 35 days in a greenhouse. Drought conditions limited total root length to a greater extent for `Rebel Jr' than for `Falcon II' and `Houndog V', while specific root length (SRL) was greater in `Falcon II' and `Houndog V' than in `Rebel Jr'. Concentrations of N, P, and Mg decreased, whereas those of K, Ca, and Fe increased, in shoots of drought-stressed plants of all three cultivars. Root N was not affected, but root P decreased in `Rebel Jr', and root K decreased in all three cultivars under drought conditions. Drought reduced the proportions of N and P in shoots and increased those in roots, while increasing the proportion of K in shoots and decreasing that in roots. During drought stress, both `Falcon II' and `Houndog V' maintained higher K concentration in shoots, and `Falcon II' in roots, than did `Rebel Jr', but `Rebel Jr' and `Houndog V' had higher Fe concentration in shoots than did `Falcon II'. The higher K and lower Fe accumulations in shoots could contribute to better drought tolerance of tall fescue cultivars.


Sign in / Sign up

Export Citation Format

Share Document