Interfering With Hyaluronic Acid Metabolism Suppresses Glioma Cell Proliferation by Regulating Autophagy
Abstract BackgroundThe tumor microenvironment plays an important role in tumor progression. Hyaluronic acid (HA), an important component of the extracellular matrix in the tumor microenvironment, abnormally accumulates in a variety of tumors. Whereas the role of abnormal HA metabolism in glioma remains unclear. MethodsThe expression level of hyaluronic acid (HA) was analyzed by ELISA assay and proteins such as HAS3, CD44, P62, LC3, CCND1 and CCNB1 were measured with Western blot analysis. The cell viability and proliferation were measured by MTT and KI67 immunofluorescence staining respectively. Autophagic vesicles and autophagosomes were quantified by transmission electron microscopy (TEM) and GFP-RFP-LC3 fluorescence analysis respectively. Cell cycle was analyzed by flowcytometry and Western blot analysis. Immunohistochemical (IHC) staining was used to detect expression levels of HA, Ki67, HAS3 and CD44 in human and mouse tumor tissues. Lentivirus constructed HAS3 and CD44 knockout stable glioma cells were transplanted to BALB/C nude mice for in vivo experiments. 4-Methylumbelliferone (4MU) was also used to treat glioma bearing mice for verifing its anti-tumor ability. The expression curve of HAS3, CD44 and the disease-free survival (DFS) curves for HAS3, CD44 in patients with LGG and GBM was performed based on TCGA database. ResultsAs shown in the present study, HA, hyaluronic acid synthase 3 (HAS3) and a receptor of HA named CD44 are expressed at high levels in human glioma tissues and negatively correlated with the prognosis of patients with glioma. Silencing HAS3 or blocking CD44 inhibited the proliferation of glioma cells in vitro and in vivo. The underlying mechanism was attributed to the inhibition of autophagy flux and further maintaining glioma cell cycle arrest in G1 phase. More importantly, 4-Methylumbelliferone (4-MU), a small competitive inhibitor of UDP with the ability to penetrate the blood-brain barrier (BBB), also inhibited the proliferation of glioma cells in vitro and in vivo. ConclusionApproaches that interfere with HA metabolism by altering the expression of HAS3 and CD44 and the administration of 4-MU potentially represent effective strategies for glioma treatment.