no donor
Recently Published Documents


TOTAL DOCUMENTS

1471
(FIVE YEARS 232)

H-INDEX

71
(FIVE YEARS 6)

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 166
Author(s):  
Elisabetta Marini ◽  
Marta Giorgis ◽  
Marta Leporati ◽  
Barbara Rolando ◽  
Konstantin Chegaev ◽  
...  

Chronic use of glyceryl trinitrate (GTN) is limited by serious side effects, such as tolerance and endothelial dysfunction of coronary and resistance arteries. Although GTN is used as a drug since more than 130 years, the mechanisms of the vasodilatory effects and of tolerance development to organic nitrates are still incompletely elucidated. New synthesized organic nitrates with and without antioxidant properties were characterized for their ex vivo tolerance profile, in order to investigate the oxidative stress hypothesis of nitrate tolerance. The organic nitrates studied showed different vasodilation and tolerance profiles, probably due to the ability or inability of the compounds to interact with the aldehyde dehydrogenase-2 enzyme (ALDH-2) involved in bioactivation. Furthermore, nitrooxy derivatives endowed with antioxidant properties did not determine the onset of tolerance, even if bioactivated by ALDH-2. The results of this study could be further evidence of the involvement of ALDH-2 in the development of nitrate tolerance. Moreover, the behavior of organic nitrates with antioxidant properties supports the hypothesis of the involvement of ROS in inactivating ALDH-2.


2022 ◽  
Vol 23 (2) ◽  
pp. 825
Author(s):  
Federica Della Rovere ◽  
Diego Piacentini ◽  
Laura Fattorini ◽  
Nicoletta Girardi ◽  
Dario Bellanima ◽  
...  

The heavy metal cadmium (Cd) affects root system development and quiescent center (QC)-definition in Arabidopsis root-apices. The brassinosteroids-(BRs)-mediated tolerance to heavy metals has been reported to occur by a modulation of nitric oxide (NO) and root auxin-localization. However, how BRs counteract Cd-action in different root types is unknown. This research aimed to find correlations between BRs and NO in response to Cd in Arabidopsis’s root system, monitoring their effects on QC-definition and auxin localization in root-apices. To this aim, root system developmental changes induced by low levels of 24-epibrassinolide (eBL) or by the BR-biosynthesis inhibitor brassinazole (Brz), combined or not with CdSO4, and/or with the NO-donor nitroprusside (SNP), were investigated using morpho-anatomical and NO-epifluorescence analyses, and monitoring auxin-localization by the DR5::GUS system. Results show that eBL, alone or combined with Cd, enhances lateral (LR) and adventitious (AR) root formation and counteracts QC-disruption and auxin-delocalization caused by Cd in primary root/LR/AR apices. Exogenous NO enhances LR and AR formation in Cd-presence, without synergism with eBL. The NO-signal is positively affected by eBL, but not in Cd-presence, and BR-biosynthesis inhibition does not change the low NO-signal caused by Cd. Collectively, results show that BRs ameliorate Cd-effects on all root types acting independently from NO.


2022 ◽  
Vol 66 (9-10) ◽  
pp. 17-23
Author(s):  
V. V. Kudelkina ◽  
A. S. Khalansky ◽  
A. I. Alekseeva ◽  
P. L. Gorelikov ◽  
A. M. Kosyreva

The search for effective approaches to the treatment of patients with glioblastoma is one of the difficult tasks of neurooncology; standard methods of therapy show limited results. Combined therapy, which includes different antitumor mechanisms, can increase its effectiveness. The combination of PLGA nanoform of doxorubicin (Dox-PLGA), antitumor cytokine — interferon alfa (IFN-α), and nitrogen oxide (NO) donor nitroglycerin (NG) was investigated in this work both in vitro (rat C6 glioma) and in vivo (rat 101.8 glioblastoma). MTT assay in the C6 cell line showed great cytotoxicity and antiproliferative effect of the combination of IFN-α with Dox-PLGA and NG. The lowest tumour cell survival was observed when using a high dose of IFN-α (10 ng/ml) in mono-mode. In the in vivo experiment, 32 female Wistar rats with 101.8 glioblastoma received therapy in the following modes: Dox-PLGA + NG; Dox-PLGA + IFN-α; Dox- PLGA + IFN-α + NG. There was a significant increase in median survival and life expectancy (ILE) in all groups receiving therapy compared to the group that did not undergo treatment. The longest median lifespan (27 days), survival up to 100 days (1 animal), ILE (131%) were observed in animals that received the combination Dox-PLGA + IFN-α+ NG, compared to the group without treatment, in which the median lifespan was 15 days. Thus, the therapy of experimental glioblastoma both in vivo and in vitro with the combination of Dox-PLGA + IFN-α + NG has the most pronounced therapeutic and antitumor effect, which must be taken into account when developing new more effective methods of treating human glioblastomas.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Nurhasni Hasan ◽  
Juho Lee ◽  
Hye-Jin Ahn ◽  
Wook Ryol Hwang ◽  
Muhammad Akbar Bahar ◽  
...  

Polymicrobial wound infections are a major cause of infectious disease-related morbidity and mortality worldwide. In this study, we prepared a nitric oxide (NO)-releasing oxidized bacterial cellulose/chitosan (BCTO/CHI) crosslinked hydrogel to effectively treat polymicrobial wound infections. Linear polyethyleneimine diazeniumdiolate (PEI/NO) was used as the NO donor. The aldehyde group of BCTO and the amine of CHI were used as crosslinked hydrogel-based materials; their high NO loading capacity and antibacterial activity on the treatment of polymicrobial-infected wounds were investigated. The blank and NO-loaded crosslinked hydrogels, namely BCTO-CHI and BCTO-CHI-PEI/NO, were characterized according to their morphologies, chemical properties, and drug loading. BCTO-CHI-PEI/NO exhibited sustained drug release over four days. The high NO loading of BCTO-CHI-PEI/NO enhanced the bactericidal efficacy against multiple bacteria compared with BCTO-CHI. Furthermore, compared with blank hydrogels, BCTO-CHI-PEI/NO has a favorable rheological property due to the addition of a polymer-based NO donor. Moreover, BCTO-CHI-PEI/NO significantly accelerated wound healing and re-epithelialization in a mouse model of polymicrobial-infected wounds. We also found that both crosslinked hydrogels were nontoxic to healthy mammalian fibroblast cells. Therefore, our data suggest that the BCTO-CHI-PEI/NO developed in this study improves the efficacy of NO in the treatment of polymicrobial wound infections.


Author(s):  
John K. Crane ◽  
Sarah R. Burke ◽  
Cassandra L. Alvarado

BackgroundPrevious reports have differed as to whether nitric oxide inhibits or stimulates the SOS response, a bacterial stress response that is often triggered by DNA damage. The SOS response is an important regulator of production of Shiga toxins (Stx) in Shiga-toxigenic E. coli (STEC). In addition, the SOS response is accompanied by hypermutation, which can lead to de novo emergence of antibiotic resistance. We studied these effects in vitro as well as in vivo.ResultsNitric oxide donors inhibited induction of the SOS response by classical inducers such as mitomycin C, ciprofloxacin, and zidovudine, as measured by assays for E. coli RecA. Nitric oxide donors also inhibited Stx toxin protein production as well as stx2 RNA in vitro and in vivo. In vivo experiments were performed with ligated ileal segments in the rabbit using a 20 h infection. The NO donor S-nitroso-acetylpenicillamine (SNAP) reduced hypermutation in vitro and in vivo, as measured by emergence of rifampin resistance. SNAP blocked the ability of the RecA protein to bind to single-stranded DNA in an electrophoretic mobility shift assay (EMSA) in vitro, an early event in the SOS response. The inhibitory effects of SNAP were additive with those of zinc acetate.ConclusionsNitric oxide donors blocked the initiation step of the SOS response. Downstream effects of this blockade included inhibition of Stx production and of hypermutation. Infection of rabbit loops with STEC resulted in a downregulation, rather than stimulation, of nitric oxide host defenses at 20 h of infection.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7533
Author(s):  
Lingyi Huang ◽  
Yu Zhou ◽  
Yizhi Wang ◽  
Min Lin

From unstable crystals to relatively stable monohydrate crystals, many researchers have been working on S-nitrosocaptopril for more than two decades. S-nitrosocaptopril monohydrate (Cap-NO·H2O) is a novel crystal form of S-nitrosocaptopril (Cap-NO), and is not only a nitric oxide (NO) donor, but also an angiotensin-converting enzyme inhibitor (ACEI). Yet, a method for long-term storage has never been reported. In order to determine the optimal storage conditions, Plackett–Burman (PB) design was performed to confirm the critical factors. Response surface methodology (RSM) was employed to determine the optimal Cap-NO·H2O storage condition, based on the rough interval determined by the path of steepest ascent experiment. The optimized storage condition was denoted as nitrogen purity of 97%, temperature of −10 °C and 1.20 g deoxidizer. In this case, a final preservation rate of 97.91 ± 0.59% could be obtained. In specific storage conditions, Cap-NO·H2O was found to be stable for at least 6 months in individual PE package, procreating a potentially applicable avenue.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1981
Author(s):  
Abolghassem Emamverdian ◽  
Yulong Ding ◽  
James Barker ◽  
Farzad Mokhberdoran ◽  
Muthusamy Ramakrishnan ◽  
...  

Recently, nitric oxide (NO) has been reported to increase plant resistance to heavy metal stress. In this regard, an in vitro tissue culture experiment was conducted to evaluate the role of the NO donor sodium nitroprusside (SNP) in the alleviation of heavy metal toxicity in a bamboo species (Arundinaria pygmaea) under lead (Pb) and cadmium (Cd) toxicity. The treatment included 200 µmol of heavy metals (Pb and Cd) alone and in combination with 200 µM SNP: NO donor, 0.1% Hb, bovine hemoglobin (NO scavenger), and 50 µM L-NAME, N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor) in four replications in comparison to controls. The results demonstrated that the addition of L-NAME and Hb as an NO synthase inhibitor and NO scavenger significantly increased oxidative stress and injured the cell membrane of the bamboo species. The addition of sodium nitroprusside (SNP) for NO synthesis increased antioxidant activity, protein content, photosynthetic properties, plant biomass, and plant growth under heavy metal (Pb and Cd) toxicity. It was concluded that NO can increase plant tolerance for metal toxicity with some key mechanisms, such as increasing antioxidant activities, limiting metal translocation from roots to shoots, and diminishing metal accumulation in the roots, shoots, and stems of bamboo species under heavy metal toxicity (Pb and Cd).


2021 ◽  
Author(s):  
Cher-Rin Chong ◽  
Saifei Liu ◽  
Hasan Imam ◽  
Tamila Heresztyn ◽  
Benedetta Sallustio ◽  
...  

Abstract Purpose: Perhexiline (Px) has previously been utilized primarily in the treatment of otherwise refractory angina pectoris and/or systolic heart failure. In recent years, Px has also shown increasing promise as a potential chemotherapeutic agent. Px inhibits carnitine palmitoyltransferases 1 and 2 (CPT1, CPT2), which control uptake of long-chain fatty acids into mitochondria and thus represent the rate-limiting steps in their metabolism. However, occasional cases of hypoglycaemia have been reported in Px-treated patients, raising the possibility that Px may also increase sensitivity to insulin. Furthermore, Px increases anti-aggregatory responses to nitric oxide (NO), an effect which may parallel insulin sensitization. No previous studies have examined either the effect of Px on insulin sensitivity, or the relationship of such putative changes with effects on NO signalling. We therefore sought to examine these relationships in patients with stable T2D and cardiovascular disease.Methods: In 30 patients with concomitant T2D and cardiovascular disease, Px was initiated, and dosage was titrated to reach therapeutic range and to prevent toxicity. Investigations were performed before and after 2 weeks, to examine changes in insulin sensitivity, platelet responsiveness to the anti-aggregatory effects of the NO donor sodium nitroprusside (SNP), as well as other markers of inflammation and modulators of NO signaling.Results: Px substantially potentiated inhibition of ADP-induced platelet aggregation by SNP (from 16.7±3.0 to 27.3±3.7%; p=0.005). Px did not change fasting blood glucose concentrations and reduced insulin sensitivity (HOMA-IR score increased from median of 4.47 to 6.08; p=0.028), via increasing fasting plasma insulin concentrations (median 16.5 to 19.0 mU/L: p=0.014). Increases in SNP responses tended (r=-0.30; p=0.11) to be reciprocally related to increases in HOMA-IR. No patient developed symptomatic hypoglycaemia, nor was there any other short-term toxicity of Px.Conclusions: In patients with stable T2D and cardiovascular disease, Px is not an insulin sensitizer, and does not normally induce hypoglycaemia. These results effectively dissociate the NO-sensitizing effect of Px from variability in insulin signaling.


2021 ◽  
Author(s):  
S.O. Svitko ◽  
K.S. Koroleva ◽  
G.F. Sitdikova ◽  
K.A. Petrova

Nitric oxide (NO) is a gaseous signaling molecule that regulates a number of physiological functions, including its role in the formation of migraine has been established. NO is endogenously produced in the body from L-arginine by NO synthase. The NO donor, nitroglycerin, is a trigger of migraine in humans and is widely used in the modeling of this disease in animals, which suggests the involvement of components of the NO signaling cascade in the pathogenesis of migraine. Based on the results obtained, it was found that an increase in the concentration of both the substrate for the synthesis of NO, L-arginine, and the NO donor, sodium nitroprusside, has a pro-nociceptive effect in the afferents of the trigeminal nerve. In this case, the effect of sodium nitroprusside is associated with the activation of intracellular soluble guanylate cyclase. Key words: nitric oxide, migraine, trigeminal nerve, L-arginine, guanylate cyclase, sodium nitroprusside, nociception.


2021 ◽  
Vol 1 (3) ◽  
pp. 366-380
Author(s):  
Cristina Arce ◽  
Diana Vicente ◽  
Fermí Monto ◽  
Laura González ◽  
Cristina Nuñez ◽  
...  

Nitric oxide (NO) is a proangiogenic factor acting through the soluble guanylate cyclase (sGC) pathway. However, angiogenic growth increases energy demand, which may be hampered by NO inhibition of cytochrome c oxidase (CcO). Then, NO activity would be the balanced result of sGC activation (pro-angiogenic) and CcO inhibition (anti-angiogenic). NO activity in a rat and eNOS−/− mice aortic ring angiogenic model and in a tube formation assay (human aortic endothelial cells) were analyzed in parallel with mitochondrial O2 consumption. Studies were performed with NO donor (DETA-NO), sGC inhibitor (ODQ), and NOS or nNOS inhibitors (L-NAME or SMTC, respectively). Experiments were performed under different O2 concentrations (0–21%). Key findings were: (i) eNOS-derived NO inhibits angiogenic growth by a mechanism independent on sGC pathway and related to inhibition of mitochondrial O2 consumption; (ii) NO inhibition of the angiogenic growth is more evident in hypoxic vessels; (iii) in the absence of eNOS-derived NO, the modulation of angiogenic growth, related to hypoxia, disappears. Therefore, NO, but not lower O2 levels, decreases the angiogenic response in hypoxia through competitive inhibition of CcO. This anti-angiogenic activity could be a promising target to impair pathological angiogenesis in hypoxic conditions, as it occurs in tumors or ischemic diseases.


Sign in / Sign up

Export Citation Format

Share Document