Biomolecular Characterization of Bacillus tequilensis A1C1 Isolated from Soil and Chromatographic Analysis of D-serine in its Cellular Fraction
Abstract The current work was carried out to investigate serine enantiomers in bacterial cells. The bacteria isolated from the pomace dumping soil site (bacteria id A1C1) showed maximum growth (O.D600 = 1.97±0.4 X 109cells/ml) within 48h in the minimal salt media supplemented with L-serine. The isolated strain was identified as ‘Bacillus tequilensis’ through 16sRNA sequencing. The study’s peculiarity reflects the fact that the isolated strain was explored for the first time to detect the presence of serine enantiomers. The strain was quantified for D-serine content by using RP-HPLC. The D-serine concentration was calculated as 0.919±0.02 nM in the bacterial cellular fraction by using a standard curve plot and linear curve equation. Further, recovery % was also calculated for the spiked samples which vary from 85-90%. The optimum growth parameters were recorded as 37℃±0.5, 150±0.5 RPM, and 7±0.5pH. The strain was Gram-positive, rod shape, large, irregular, off-white-coloured, and synthesized endospores. A1C1 showed positive results (within 14±2h of incubation) for indole production, lactose fermentation, and protease (0.9 mm, clear zone). The antibacterial assay showed 5% and 2% efficacy of the extracellular fraction against MTCC 40 and MTCC 11949 respectively within 12h of incubation. These results demonstrate that Bacillus tequilensis A1C1 has antibacterial activity, the potential to secrete extracellular enzymes, and D-serine content in the intracellular fraction of the cultivated cells. Given results demonstrate the industrial significance and implication of the isolated strain for the synthesis of commercially valuable products.